Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Collaborative project of quantum computer developers: New ATIQ project with funding from the German Federal Ministry of Education and Research has a total volume of EUR 44.5 million

Modern ion trap for a scalable quantum computer designed by the QUANTUM group at the JGU Institute of Physics

CREDIT
photo/©: QUANTUM group / JGU
Modern ion trap for a scalable quantum computer designed by the QUANTUM group at the JGU Institute of Physics CREDIT photo/©: QUANTUM group / JGU

Abstract:
Quantum computers promise unprecedented computing power for applications where conventional data processors based on "zeros and ones" fail. In the new Trapped-Ion Quantum Computer for Applications (ATIQ) project, 25 partners from research institutions are now working together with industrial partners to develop quantum computer demonstrators implemented together with users of quantum computers. The partners will tackle major technical challenges to realize quantum computer demonstrators made in Germany and to facilitate 24/7 access for users. The German Federal Ministry of Education and Research (BMBF) is funding the project with a total of EUR 37.4 million.

Collaborative project of quantum computer developers: New ATIQ project with funding from the German Federal Ministry of Education and Research has a total volume of EUR 44.5 million

Mainz, Germany | Posted on December 10th, 2021

The ATIQ project aims to develop a first generation of reliable, user-friendly quantum computing demonstrators based on ion trap technology available 24/7 within 30 months. To this end, the leading groups in ion trap research at the universities of Hannover/ Braunschweig, Siegen, and Mainz have joined forces with research institutions and industrial partners. "We want to take the next big step together. ATIQ is intended to be the crystallization point for a German ecosystem of ion trap quantum technology, bringing together technology partners, research, and users resulting in relevant commercial exploitation," said project coordinator Professor Christian Ospelkaus of Leibniz University Hannover and Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, summarizing the motivation for this project.

"Instead of classical bits, a quantum computer uses qubits, for which ions are the ideal storage medium. We develop the best control of these qubits, even in large quantum registers," said Professor Dr. Christof Wunderlich from the University of Siegen. "Combining a classical high-performance computer with such a quantum co-processor is an unbeatable pairing for new computing tasks," added Professor Ferdinand Schmidt-Kaler of Johannes Gutenberg University Mainz (JGU). "Especially if you combine a classical high-performance computer with such a quantum coprocessor, this team is unbeatable for new computing tasks" adds Professor Ferdinand Schmidt-Kaler from the University of Mainz.

Robust and scalable quantum hardware

ATIQ has enormous potential for economic and scientific success. Quantum computers promise unprecedented computing power for applications where classical high-performance computers by themselves fail completely. The combination of classical high-performance computing and quantum computing, on the other hand, opens up completely new applications. Thus there is an urgent need for Germany to provide robust and scalable quantum hardware. The ATIQ consortium aims to optimize hardware for applications in chemistry. Novel chemical substances and the reactions necessary to produce them could then be simulated on quantum computers. They could also be applied in finance, paving the way for new approaches in credit risk assessment.

The core of the ATIQ quantum processor is based on ion trap technology, which is recognized worldwide as one of the most promising routes to quantum computing. However, current systems are complex laboratory machines requiring considerable maintenance and calibration efforts by highly qualified personnel. ATIQ addresses these technical challenges to manage continuous operation with reliable, high-quality computing operations. For this purpose, the ATIQ consortium, in collaboration with technology and industry partners, optimizes the control of the processors with electronic and optical signals, thus enabling external users to execute computing algorithms independently. Furthermore, such optimization may be used for upscaling the quantum demonstrators from an initial 10 to more than 100 qubits.

The consortium's strength is based on the expertise as developers of the ion trap technology as well as on physical and technical fundamentals at the universities and research institutions of Leibniz University Hannover / PTB Braunschweig, Johannes Gutenberg University Mainz, and the University of Siegen together with other research facilities, strong industry and technology partners as well as users and alliances such as the Quantum Valley Lower Saxony.



About the project

The collaborative project ATIQ – Trapped-Ion Quantum Computer for Applications is part of the BMBF funding initiative on Quantum Computer Demonstration Setups. The project will be funded from 1 December 2021 until 30 November 2026 to the tune of EUR 44.5 million. ATIQ is coordinated by Leibniz University Hannover and brings together the expertise of 25 partners, including Johannes Gutenberg University Mainz, the University of Siegen, TU Braunschweig, RWTH Aachen University, Physikalisch-Technische Bundesanstalt (PTB), and Fraunhofer-Gesellschaft with AMO GmbH, AKKA Industry Consulting GmbH, Black Semiconductor GmbH, eleQtron GmbH, FiberBridge Photonics GmbH, Infineon Technologies AG, JoS QUANTUM GmbH, LPKF Laser & Electronics AG, Parity Quantum Computing Germany GmbH, QUARTIQ GmbH, Qubig GmbH, and TOPTICA Photonics AG. Associate partners include AQT Germany GmbH, Boehringer Ingelheim, Covestro AG, DLR-SI, Volkswagen AG, and QUDORA Technologies GmbH.

####

For more information, please click here

Contacts:
Kathrin Voigt
Johannes Gutenberg Universitaet Mainz

Office: 0049-613-139-27008
Expert Contacts

Professor Dr. Ferdinand Schmidt-Kaler
Johannes Gutenberg University Mainz

Office: +49 6131 39 26234
Professor Dr. Christian Ospelkaus
Leibniz University Hannover

Office: +49 511 762-17644
Professor Dr. Christof Wunderlich
University of Siegen

Office: +49 271 7403757

Copyright © Johannes Gutenberg Universitaet Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project