Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New version of organic electronics for rational management of energy: Researchers of the UMA study the possibility of altering carbon to create chips with a higher capacity than those used nowadays made of electronic silicon

Researchers of the UMA study the possibility of altering carbon to create chips with a higher capacity than those used nowadays made of electronic silicon. They propose “spintronics” as an alternative for the current energy problems

CREDIT
University of Malaga
Researchers of the UMA study the possibility of altering carbon to create chips with a higher capacity than those used nowadays made of electronic silicon. They propose “spintronics” as an alternative for the current energy problems CREDIT University of Malaga

Abstract:
Due to the current energy problems, which encompass high electricity bills, regional tensions among oil and gas producers or the impact of climate change, among others, a rational management of energy consumption is becoming increasingly necessary.

New version of organic electronics for rational management of energy: Researchers of the UMA study the possibility of altering carbon to create chips with a higher capacity than those used nowadays made of electronic silicon

Malaga, Spain | Posted on December 10th, 2021

Microelectronics –the basis of the functioning of computers and all kinds of programable electronic devices– has hitherto been, and is, built on silicon and the physics of the electron’s charge, that, although they meant an unprecedented technological advance, start showing signs of saturation because of the high energy consumption associated with them.

Organic electronics progresses as an alternative to silicon. “This is a type of technology that replaces the latter with organic matter, which completion would mean the elimination of energy costs in the production of “electronic silicon”, apart from other limited minerals that are essential in its implementation, such as lithium”, says Professor of Physical Chemistry of the UMA Juan Casado Cordón, who has led a study which investigates the properties of carbon-based molecules for a new version of organic electronics: spintronics, defined as microelectronics based on the spin of the electron, one of the characteristics, together with the charge, of electrons.

“The spin of the electron and its physical properties inherent in its quantum mechanical nature has taken center stage. The combination of the charge and spin of the electron constitutes a way of expanding the versatility and functionality of electronic materials, giving rise to the novel field of spintronics”, explains the researcher of the UMA.

“Therefore, we progress through spintronics to manage to alter carbon in a way that it becomes as good at conducting electric current as silicon, which is used in electronics”, he adds.

This expert states that they have discovered how the flexible structure of certain organic molecules is capable of modulating the spin state of the whole molecular system and, at the same time, unveiled a thermal mechanism of normal and reversed spin mobility by vibrations –certain coordinated movements of atoms– of the carbon skeleton.

“Finding alternative organic structures to silicon that are capable of modulating their spin state may represent, through spintronics, a necessary solution to the current energy problems”, asserts Casado Cordón.

Potential implementation in real devices

Likewise, this research, in which the University of Bologna (Italy) and the University of Electronic Science and Technology of China also participated, explored other intrinsic properties of matter, beyond the electric charge.

The results of this study were published in the scientific journal Nature Communications. It was developed with the assistance of the Vibrational Spectroscopy Unit of the Central Research Services. The young researcher of the Faculty of Science Sergio Moles carried out much of the experimental research.

Searching for other flexible organic molecules with complementary mechanisms of spin-vibration coupling and the possibility of polarizing electrons of other neighboring molecules in solid state, varying the vibrational state, are among the long-term goals of this research team that, as a final step, is going for their implementation in real devices.

Thanks to spintronics, Malaga may become a benchmark for the technology of the future.

####

For more information, please click here

Contacts:
María Aguilar
University of Malaga

Office: 95-213-1129

Copyright © University of Malaga

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Bibliography:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Organic Electronics

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project