Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia

Scientists from UTS developed new method to prepare highly efficient photocatalysts for ammonia synthesis

CREDIT
An Feng, University of Technology Sydney
Scientists from UTS developed new method to prepare highly efficient photocatalysts for ammonia synthesis CREDIT An Feng, University of Technology Sydney

Abstract:
Compare with bulk graphitic carbon nitride, the optimal sample had 2.93-fold photocatalytic nitrate reduction to ammonia activity (2.627 mg/h/gcat), and the NH3 selectivity increased from 50.77% to 77.9%. They published their approach on September 06 in the Energy Material Advances.

Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia

Beijing, China | Posted on December 3rd, 2021

With simple stir in green tea solution, some high-valent irons can be reduced to metals, which may significantly improve the photocatalytic activity of semiconductors. Herein, waste green tea bags were used to reduce the Ru3+, and the photocatalytic activity of the optimized sample was 2.93-fold as that of bulk g-C3N4 under simulated sunlight irradiation, according to corresponding author Bing-Jie Ni, professor at Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS).



“Currently, ammonia is mainly produced via the Haber process, in which gaseous nitrogen and water gas are converted to ammonia under high temperature and high pressure with the assist of catalysts. Every year, the synthesis of ammonia consumes about 2% of global energy, leading to serious carbon dioxide emission. Thus, it is urgent to develop a green synthesis of ammonia under ambient conditions,” Ni said. “Using solar energy to covert nitrate to ammonia is of great significance, as it can not only eliminate the water pollutant, but also synthesize high-value chemicals.”



Ni and his team are working on the field of renewable energy production, particularly the interface between chemical engineering and environmental technology. They focus on the integration of these disciplines to develop innovative and sustainable technological solutions to achieve efficient energy generation from renewable resources.



“However, the reduction of nitrate to ammonia is really challenging in terms of kinetics and thermodynamics, as it is an eight-electron process with multiple steps.” Ni explained. “Based on experimental and theoretical studies, the introduction of Ru to g-C3N4 can not only boost the light absorption, the adsorption of nitrate, but also accelerate the separation of electron-hole pairs.



The thermodynamic energy barrier for the rate determining step in nitrate reduction to the ammonia process is calculated to be less than 0.75 eV, which is much lower than the competing hydrogen generation (0.98 eV) and nitrogen formation (1.36 eV), leading to the preference of generating ammonia.”



The results and findings of this work may provide a new platform for the facile and green synthesis of metal particle modified photocatalysts for reducing nitrate to ammonia under ambient conditions.



Other main contributors include Dr. Derek Hao, Dr. Jaiwei Ren, Prof. Ho Kyong Shon from Centre for Technology in Water and Wastewater, University of Technology Sydney, as well as A/Prof. Ying Wang affiliated with Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.



This work is mainly supported by the Australian Research Council Future Fellowship (FT160100195), the National Key Research and Development Program of China (2016YFA0602900), the National Natural Science Foundation of China (21673220), Department of Science and Technology of Sichuan Province (2017GZ0051), and Jilin Province Science and Technology Development Program (20190201270JC, 20180101030JC).



###



Reference

Authors: Derek Hao,1 Jiawei Ren,1 Ying Wang,2 Hamidreza Arandiyan,3,4 Magnus Garbrecht,5 Xiaojuan Bai,6 Ho Kyong Shon,1 Wei Wei,1 and Bing-Jie Ni1

Title of original paper: A Green Synthesis of Ru Modified g-C3N4 Nanosheets for Enhanced Photocatalytic Ammonia Synthesis

Journal: Energy Material Advances

DOI: 10.34133/2021/9761263

Affiliations:

1Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia

2State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

3Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney 2006, Australia

4Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia

5Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney 2006, Australia

6Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 102612, China

About Dr. Derek Hao

Dr. Derek Hao received his bachelor's degree in materials chemistry from the School of Materials Science and Technology, China University of Geosciences, Beijing, in 2017. He previously studied as a visiting student at the Department of Chemistry, Tsinghua University, for 4 years. He finished his Ph.D. at Centre for Technology in Water and Wastewater (CTWW), University of Technology Sydney (UTS) in 2021. Currently, he is a Research Fellow at Centre for Catalysis and Clean Energy, Griffith University. His research interests include the synthesis and application of nanomaterials in energy and environmental areas. He is member of Royal Society of Chemistry, the Australian Water Association and the Australian Nano Network.

####

Contacts:
Ning Xu
Beijing Institute of Technology Press Co., Ltd

Copyright © BEIJING INSTITUTE OF TECHNOLOGY PRESS CO., LTD

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Chemistry

Examining recent developments in quantum chromodynamics: A new collection looks at recent development in the field of quantum chromodynamics from a range of perspectives December 24th, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Unprecedented view of a single catalyst nanoparticle at work: X-rays reveal compositional changes on active surface under reaction conditions October 1st, 2021

Possible Futures

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Discoveries

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Announcements

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Environment

Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Color-changing indicator predicts algal blooms November 5th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Energy

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Templating approach stabilizes ‘ideal’ material for alternative solar cells December 24th, 2021

Activating lattice oxygen in perovskite oxide to optimize fuel cell performance December 17th, 2021

Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project