Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists develop promising vaccine method against recurrent UTI

Dr. Nicole De Nisco conducts research aimed at understanding the basis for recurring urinary tract infections in postmenopausal women. In her lab, students monitor the growth of various bacteria.

Credit:The University of Texas at Dallas
Dr. Nicole De Nisco conducts research aimed at understanding the basis for recurring urinary tract infections in postmenopausal women. In her lab, students monitor the growth of various bacteria. Credit:The University of Texas at Dallas

Abstract:
Researchers at The University of Texas at Dallas are investigating the use of whole-cell vaccines to fight urinary tract infection (UTI), part of an effort to tackle the increasingly serious issue of antibiotic-resistant bacteria.

Scientists develop promising vaccine method against recurrent UTI

Dallas, TX | Posted on November 19th, 2021

Dr. Nicole De Nisco, assistant professor of biological sciences, and Dr. Jeremiah Gassensmith, associate professor of chemistry and biochemistry, recently demonstrated the use of metal-organic frameworks (MOFs) to encapsulate and inactivate whole bacterial cells to create a “depot” that allows the vaccines to last longer in the body.

The resulting study, published online Sept. 21 in the American Chemical Society’s journal ACS Nano, showed that in mice this method produced substantially enhanced antibody production and significantly higher survival rates compared to standard whole-cell vaccine preparation methods.

“Vaccination as a therapeutic route for recurrent UTIs is being explored because antibiotics aren’t working anymore,” De Nisco said. “Patients are losing their bladders to save their lives because the bacteria cannot be killed by antibiotics or because of an extreme allergy to antibiotics, which is more common in the older population than people may realize.”

The American Urological Association estimates that 150 million UTIs occur yearly worldwide, accounting for $6 billion in medical expenditures. If not successfully treated, a UTI can lead to sepsis, which can be fatal.

Recurrent UTI, De Nisco said, is primarily regarded as a women’s health issue, and although it’s common — especially in postmenopausal women — it’s something many women don’t talk about a lot.

“Every subsequent infection becomes more difficult to treat,” De Nisco said. “Even if you clear the bacteria from the bladder, populations persist elsewhere and usually become resistant to the antibiotic used. When patients accumulate antibiotic resistances, they’re eventually going to run out of options.”

De Nisco’s continuing exploration of how UTIs progress and recur in older women is funded by a recent five-year, $1.3 million grant (R01DK131267) from the National Institutes of Health.

De Nisco’s collaboration with Gassensmith began in late 2018 after she gave a presentation on the microbiology of UTI to a campus safety protocol committee.

“Afterward, we talked about my research group’s idea of creating better whole-cell vaccines by preserving antigens in this slow-release depot,” Gassensmith said. “At the time, we had no real models to test it with, and I thought UTI presented a very good opportunity.”

Vaccines work by introducing a small amount of killed or weakened disease-causing germs, or some of their components, to the body. These antigens prompt the immune system to produce antibodies against a particular disease. Building vaccines against pathogenic bacteria is inherently difficult because bacteria are significantly larger and more complex than viruses. Selecting which biological components to use to create antigens has been a major challenge.

Consequently, using the entire cell is preferable to choosing just a piece of a bacterium, Gassensmith said.

“We throw the whole kitchen sink at them because that’s what your body normally sees when it becomes infected,” he said.

The whole-cell approach has its own issues, however.

“Vaccines using whole-cell dead bacteria haven’t succeeded because the cells typically don’t last long enough in the body to produce long-term, durable immune responses,” Gassensmith said. “That’s the reason for our MOF antigen depot: It allows an intact, dead pathogen to exist in tissue longer, as if it were an infection, in order to trigger a full-scale immune system response.”

The metal-organic framework Gassensmith’s team developed encapsulates and immobilizes an individual bacterium cell in a crystalline polymeric matrix that not only kills the bacterium but also preserves and stabilizes the dead cell against high temperature, moisture and organic solvents.

In their experiments, the researchers used a strain of Escherichia coli. There are no vaccines against any pathogenic strain of this bacterium. Uropathogenic E. coli causes about 80% of all community-acquired UTIs.

“When we challenged these mice with a lethal injection of bacteria, after they were vaccinated, almost all of our animals survived, which is a much better performance than with traditional vaccine approaches,” Gassensmith said. “This result was repeated multiple times, and we’re quite impressed with how reliable it is.”

Although the method has not yet been tested in humans, De Nisco said it has the potential to help millions of patients.

“This study on UTI was a proof of concept that whole-cell vaccines are more effective in this extreme, lethal-sepsis model,” De Nisco said. “Showing that this works against recurrent UTI would be a significant breakthrough.”

Beyond recurrent UTI or urosepsis, researchers believe the antigen depot method could be applied broadly to bacterial infections, including endocarditis and tuberculosis.

“We’re working on translating this approach to TB, which is a very different organism, but like uropathogenic E. coli, when it enters the tissue, it stays, and it recurs,” Gassensmith said. “It requires a new way of thinking about how vaccines should work.

“Vaccine technology is about two centuries old, and it has evolved amazingly little. We hope our platform can open up using existing, well-studied pathogens to create more directed and engineered immune responses.”

The project, involving two departments in the School of Natural Sciences and Mathematics, was initially facilitated by the UT Dallas Office of Research and Innovation through a grant to the two scientists from the Seed Program for Interdisciplinary Research. The initiative encourages cross-disciplinary collaboration among University researchers. The research also was funded in part by grants from the National Science Foundation (DMR-1654405 and DMR-2003534) and The Welch Foundation.

Other UT Dallas authors of the ACS Nano article are lead authors Michael Luzuriaga PhD’20, now a research fellow in pediatrics at Harvard Medical School, and chemistry doctoral student Fabian Castro Herbert BS’18; Dr. Michael Burton, assistant professor of neuroscience; Candace Benjamin PhD’20, now a conjugation scientist at Vaxcyte in California; Sarah Popal BS’21, a neuroscience graduate applying to dental schools; molecular and cell biology doctoral students Jashkaran Gadhvi, Sundharamani Venkitapathi and Kavya Veera; and chemistry doctoral students Olivia Brohlin, Ryanne Ehrman, Thomas Howlett BS’18, Arezoo Shahrivarkevishahi and Yalini Wijesundara.

Immunologist Dr. Molly Ingersoll of the Institut Pasteur in Paris also contributed.

####

For more information, please click here

Contacts:
Stephen Fontenot
University of Texas at Dallas

Office: 972-883-4405

Copyright © The University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Visualizing temperature transport: An unexpected technique for nanoscale characterization November 19th, 2021

Govt.-Legislation/Regulation/Funding/Policy

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

'Dancing molecules' successfully repair severe spinal cord injuries: After single injection, paralyzed animals regained ability to walk within four weeks November 12th, 2021

Possible Futures

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

Nanomedicine

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

'Dancing molecules' successfully repair severe spinal cord injuries: After single injection, paralyzed animals regained ability to walk within four weeks November 12th, 2021

Quantum Physics in Proteins: Artificial intelligence affords unprecedented insights into how biomolecules work November 5th, 2021

Discoveries

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Announcements

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

'Dancing molecules' successfully repair severe spinal cord injuries: After single injection, paralyzed animals regained ability to walk within four weeks November 12th, 2021

Quantum Collaboration: Two UCSB scientists receive award to partner with Cisco’s new Quantum Research Team November 3rd, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

Nanobiotechnology

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

'Dancing molecules' successfully repair severe spinal cord injuries: After single injection, paralyzed animals regained ability to walk within four weeks November 12th, 2021

Quantum Physics in Proteins: Artificial intelligence affords unprecedented insights into how biomolecules work November 5th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Research partnerships

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

Quantum Collaboration: Two UCSB scientists receive award to partner with Cisco’s new Quantum Research Team November 3rd, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project