Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Energizer atoms: JILA researchers find new way to keep atoms excited

Still images from animation of JILA's experiment keeping atoms excited longer than usual.

CREDIT
Hanacek/NIST
Still images from animation of JILA's experiment keeping atoms excited longer than usual. CREDIT Hanacek/NIST

Abstract:
JILA researchers have tricked nature by tuning a dense quantum gas of atoms to make a congested “Fermi sea,” thus keeping atoms in a high-energy state, or excited, for about 10% longer than usual by delaying their normal return to the lowest-energy state. The technique might be used to improve quantum communication networks and atomic clocks.

Energizer atoms: JILA researchers find new way to keep atoms excited

Gaithersburg, MD | Posted on November 19th, 2021

Quantum systems such as atoms that are excited above their resting state naturally calm down, or decay, by releasing light in quantized portions called photons. This common process is evident in the glow of fireflies and emission from LEDs. The rate of decay can be engineered by modifying the environment or the internal properties of the atoms. Previous research has modified the electromagnetic environment; the new work focuses on the atoms.

The new JILA method relies on a rule of the quantum world known as the Pauli exclusion principle, which says identical fermions (a category of particles) can’t share the same quantum states at the same time. Therefore, if enough fermions are in a crowd — creating a Fermi sea — an excited fermion might not be able to fling out a photon as usual, because it would need to then recoil. That recoil could land it in the same quantum state of motion as one of its neighbors, which is forbidden due to a mechanism called Pauli blocking.

The blocking achievement is described in the Nov. 19 issue of Science. JILA is jointly operated by the National Institute of Standards and Technology (NIST) and University of Colorado Boulder.

“Pauli blocking uses well-organized quantum motional states of a Fermi sea to block the recoil of an atom that wants to decay, thus prohibiting spontaneous decay,” NIST/JILA Fellow Jun Ye said. “It is a profound quantum effect for the control of matter’s properties that was previously deemed unchangeable.”

The idea of engineering an atom’s excited-state lifetime by embedding it in a Fermi sea has been proposed before, but the JILA group is the first, along with other research described in the same issue of Science, to actually do it. This is the first time that atoms’ internal radiation properties have been linked to their external motion.

The JILA team carried out the experiments with a low-energy, or degenerate, Fermi gas of thousands of strontium atoms. The JILA group uses these quantum gases to make the latest atomic clocks. In these low-temperature Fermi gases, all the atoms’ properties are restricted to specific values, or quantized, and the atoms avoid each other by keeping a minimum distance between pairs. By contrast, atoms in ordinary gases are randomly distributed, and they do not collectively influence each other.

The researchers used blue light to excite atoms in the Fermi sea and then measured the resulting photon radiation along different directions. By setting up specific conditions, the team reduced photon emission along a narrow scattering angle by up to 50%. In this case, an atom prepared in the excited state would on average remain in this state 10% longer than usual. The natural excited lifetime of five nanoseconds was too short to measure, so the researchers used photon scattering as an indirect indicator. Future experiments using different energy levels in the atoms or denser and even colder gases could extend excited states for longer time periods or even block decay entirely, Ye said.

Key features of the experiment included making a gas with the lowest possible energy, enabling the purely quantum-mechanical blocking phenomenon to occur. In addition, the Fermi sea was large enough that atoms in the middle couldn’t escape. Atoms on the surface can’t be blocked as easily.

Finally, the researchers excited only a small number of atoms and collected the emitted photons at a narrow angle with respect to the blue excitation beam. This configuration enabled observation of small motion transfers. A large angle would give the atoms too much of a momentum kick, increasing their chances of escape and weakening the blocking effect.

The JILA technique offers new ways to quantum-engineer atom-light systems, with potential applications such as protecting optical qubits in quantum communication networks and improving atomic clock stability by extending atom interrogation times to maintain exact ticking.

Funding for the research was provided by the Defense Advanced Research Projects Agency, the National Science Foundation and NIST.

####

For more information, please click here

Contacts:
Laura Ost
National Institute of Standards and Technology (NIST)

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Pauli blocking of atom-light scattering:

Related News Press

News and information

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Quantum communication

New hardware integrates mechanical devices into quantum tech April 22nd, 2022

Major instrumentation initiative for research into quantum technologies: Paderborn University receives funding from German Research Foundation December 24th, 2021

How flawed diamonds 'lead' to flawless quantum networks October 1st, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022

Possible Futures

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Discoveries

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Announcements

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

Military

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022

New hardware integrates mechanical devices into quantum tech April 22nd, 2022

Graphene-hBN breakthrough to spur new LEDs, quantum computing: Study uncovers first method for producing high-quality, wafer-scale, single-layer hexagonal boron nitride April 15th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project