Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim

Aikaterini Gialopsou with magnetic shield where participant brain signal measurements are taken

CREDIT
University of Sussex
Aikaterini Gialopsou with magnetic shield where participant brain signal measurements are taken CREDIT University of Sussex

Abstract:
New highly sensitive quantum sensors for the brain may in the future be able to identify brain diseases such as dementia, ALS and Parkinson's, by spotting a slowing in the speed at which signals travel across the brain. The research findings from a paper led by University of Sussex quantum physicists are published in Scientific Reports journal.

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim

Brighton, UK | Posted on November 19th, 2021

The quantum scanners being developed by the scientists can detect the magnetic fields generated when neurons fire. Measuring moment-to-moment changes in the brain, they track the speed at which signals move across the brain. This time-element is important because it means a patient could be scanned twice several months apart to check whether the activity in their brain is slowing down. Such slowing can be a sign of Alzheimer’s or other diseases of the brain.

In this way, the technology introduces a new method to spot bio-markers of early health problems.

Aikaterini Gialopsou, a doctoral researcher in the School of Mathematical and Physical Sciences at the University of Sussex and Brighton and Sussex Medical School is the lead author on the paper. She says of the discovery:

“We’ve shown for the first time that quantum sensors can produce highly accurate results in terms of both space and time. While other teams have shown the benefits in terms of locating signals in the brain, this is the first time that quantum sensors have proved to be so accurate in terms of the timing of signals too.

"This could be really significant for doctors and patients concerned with the development of brain disorders.”

These quantum sensors are believed to be much more accurate than either EEG or fMRI scanners, due in part to the fact that the sensors can get closer to the skull. The closer proximity of the sensors to the brain can not only improve the spatial, but also the temporal resolution of the results. This double improvement of both time and space accuracy is highly significant as it means brain signals can be tracked in ways that are inaccessible to other types of sensors.

“It’s the quantum technology which makes these sensors so accurate”, explains Professor Peter Kruger, who leads the Quantum Systems and Devices lab at the University of Sussex. He adds:

“The sensors contain a gas of rubidium atoms. Beams of laser light are shone at the atoms, and when the atoms experience changes in a magnetic field, they emit light differently. Fluctuations in the emitted light reveal changes in the magnetic activity in the brain. The quantum sensors are accurate within milliseconds, and within several millimetres."

The technology behind the scanners is called magnetoencephalography (MEG). Combining MEG tech with these new quantum sensors has developed a non-invasive way to probe activity in the brain. Unlike existing brain scanners – which send a signal into the brain and record what come back – MEG passively measures what is occurring inside from the outside, eliminating the health risks currently associated for some patients with invasive scanners.

Currently MEG scanners are expensive and bulky, making them challenging to use in clinical practice. This development of quantum sensor technology could be crucial for transferring the scanners from highly controlled laboratory environments into real-world clinical settings.

“It’s our hope with this development” adds Gialopsou. “That in discovering this enhanced function of quantum brain scanners the door is opened to further developments that could bring about a quantum revolution in neuroscience. This matters because, although the scanners are in their infancy, it has implications for future developments that could lead to crucial early diagnosis of brain diseases, such as ALS, MS and even Alzheimer's. That’s what motivates us as a team.”

The University of Sussex and Brighton and Sussex Medical School led research team working on this development included scientists from the University of Brighton and the German National Metrology Institute PTB.

####

For more information, please click here

Contacts:
Stephanie Allen
University of Sussex

Office: 01-273-873-659

Copyright © University of Sussex

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Drawing data in nanometer scale September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Quantum Physics

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Lattice distortion of perovskite quantum dots induces coherent quantum beating September 9th, 2022

Bound by light: Glass nanoparticles show unexpected coupling when levitated with laser light August 26th, 2022

Master equation to boost quantum technologies: FQXi-funded analysis will help physicists exert exquisitely precise real-time feedback control over quantum systems August 26th, 2022

Possible Futures

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Nanomedicine

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Georgia State researchers discover novel way to treat IBD with lipid nanoparticles August 26th, 2022

Engineers fabricate a chip-free, wireless electronic “skin”: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors – Signal transduction probably occurs after receptor enrichment August 19th, 2022

Sensors

Silicon image sensor that computes: Device speeds up, simplifies image processing for autonomous vehicles and other applications August 26th, 2022

Engineers fabricate a chip-free, wireless electronic “skin”: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022

Discoveries

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Announcements

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Conformal optical black hole for cavity September 30th, 2022

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Research partnerships

Exquisitely thin membranes can slash energy spent refining crude oil into fuel and plastic: Queen Mary scientists have created a new type of nanomembrane that presents a less energy intensive way to fractionate hydrocarbons from crude oil September 30th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

New catalyst offers a more affordable way to produce hydrogen from seawater September 9th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project