Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum Physics in Proteins: Artificial intelligence affords unprecedented insights into how biomolecules work

Illustration of a quantum wave packet in close vicinity of a conical intersection between two potential energy surfaces. The wave packet represents the collective motion of multiple atoms in the photoactive yellow protein. A part of the wave packet moves through the intersection from one potential energy surface to the other, while the another part remains on the top surface, leading to a superposition of quantum states.

CREDIT
DESY, Niels Breckwoldt
Illustration of a quantum wave packet in close vicinity of a conical intersection between two potential energy surfaces. The wave packet represents the collective motion of multiple atoms in the photoactive yellow protein. A part of the wave packet moves through the intersection from one potential energy surface to the other, while the another part remains on the top surface, leading to a superposition of quantum states. CREDIT DESY, Niels Breckwoldt

Abstract:
A new analytical technique is able to provide hitherto unattainable insights into the extremely rapid dynamics of biomolecules. The team of developers, led by Abbas Ourmazd from the University of Wisconsin–Milwaukee and Robin Santra from DESY, is presenting its clever combination of quantum physics and molecular biology in the scientific journal Nature. The scientists used the technique to track the way in which the photoactive yellow protein (PYP) undergoes changes in its structure in less than a trillionth of a second after being excited by light.

Quantum Physics in Proteins: Artificial intelligence affords unprecedented insights into how biomolecules work

Hamburg, Germany | Posted on November 5th, 2021

“In order to precisely understand biochemical processes in nature, such as photosynthesis in certain bacteria, it is important to know the detailed sequence of events,” Santra explains their underlying motivation. “When light strikes photoactive proteins, their spatial structure is altered, and this structural change determines what role a protein takes on in nature.” Until now, however, it has been almost impossible to track the exact sequence in which structural changes occur. Only the initial and final states of a molecule before and after a reaction can be determined and interpreted in theoretical terms. “But we don’t know exactly how the energy and shape changes in between the two,” says Santra. “It’s like seeing that someone has folded their hands, but you can’t see them interlacing their fingers to do so.”

Whereas a hand is large enough and the movement is slow enough for us to follow it with our eyes, things are not that easy when looking at molecules. The energy state of a molecule can be determined with great precision using spectroscopy; and bright X-rays for example from an X-ray laser can be used to analyse the shape of a molecule. The extremely short wavelength of X-rays means that they can resolve very small spatial structures, such as the positions of the atoms within a molecule. However, the result is not an image like a photograph, but instead a characteristic interference pattern, which can be used to deduce the spatial structure that created it.

Bright and short X-ray flashes

Since the movements are extremely rapid at the molecular level, the scientists have to use extremely short X-ray pulses to prevent the image from being blurred. It was only with the advent of X-ray lasers that it became possible to produce sufficiently bright and short X-ray pulses to capture these dynamics. However, since molecular dynamics takes place in the realm of quantum physics where the laws of physics deviate from our everyday experience, the measurements can only be interpreted with the help of a quantum-physical analysis.

A peculiar feature of photoactive proteins needs to be taken into consideration: the incident light excites their electron shell to enter a higher quantum state, and this causes an initial change in the shape of the molecule. This change in shape can in turn result in the excited and ground quantum states overlapping each other. In the resulting quantum jump, the excited state reverts to the ground state, whereby the shape of the molecule initially remains unchanged. The conical intersection between the quantum states therefore opens a pathway to a new spatial structure of the protein in the quantum mechanical ground state.

The team led by Santra and Ourmazd has now succeeded for the first time in unravelling the structural dynamics of a photoactive protein at such a conical intersection. They did so by drawing on machine learning because a full description of the dynamics would in fact require every possible movement of all the particles involved to be considered. This quickly leads to unmanageable equations that cannot be solved.

6000 dimensions

“The photoactive yellow protein we studied consists of some 2000 atoms,” explains Santra, who is a Lead Scientist at DESY and a professor of physics at Universität Hamburg. “Since every atom is basically free to move in all three spatial dimensions, there are a total of 6000 options for movement. That leads to a quantum mechanical equation with 6000 dimensions – which even the most powerful computers today are unable to solve.”

However, computer analyses based on machine learning were able to identify patterns in the collective movement of the atoms in the complex molecule. “It’s like when a hand moves: there, too, we don’t look at each atom individually, but at their collective movement,” explains Santra. Unlike a hand, where the possibilities for collective movement are obvious, these options are not as easy to identify in the atoms of a molecule. However, using this technique, the computer was able to reduce the approximately 6000 dimensions to four. By demonstrating this new method, Santra’s team was also able to characterise a conical intersection of quantum states in a complex molecule made up of thousands of atoms for the first time.

The detailed calculation shows how this conical intersection forms in four-dimensional space and how the photoactive yellow protein drops through it back to its initial state after being excited by light. The scientists can now describe this process in steps of a few dozen femtoseconds (quadrillionths of a second) and thus advance the understanding of photoactive processes. “As a result, quantum physics is providing new insights into a biological system, and biology is providing new ideas for quantum mechanical methodology,” says Santra, who is also a member of the Hamburg Cluster of Excellence “CUI: Advanced Imaging of Matter”. “The two fields are cross-fertilising each other in the process.”

DESY is one of the world’s leading particle accelerator centres and investigates the structure and function of matter – from the interaction of tiny elementary particles and the behaviour of novel nanomaterials and vital biomolecules to the great mysteries of the universe. The particle accelerators and detectors that DESY develops and builds at its locations in Hamburg and Zeuthen are unique research tools. They generate the most intense X-ray radiation in the world, accelerate particles to record energies and open up new windows onto the universe. DESY is a member of the Helmholtz Association, Germany’s largest scientific association, and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent).

####

For more information, please click here

Contacts:
Thomas Zoufal
Deutsches Elektronen-Synchrotron DESY

Office: +49-40-8998-1666

Copyright © Deutsches Elektronen-Synchrotron DESY

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference:

Related News Press

News and information

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Quantum Physics

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2 November 5th, 2021

Quantum Collaboration: Two UCSB scientists receive award to partner with Cisco’s new Quantum Research Team November 3rd, 2021

Possible Futures

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Nanomedicine

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Immune system-stimulating nanoparticle could lead to more powerful vaccines: The potent new adjuvant could be used to help make vaccines against HIV and other infectious diseases December 3rd, 2021

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

Discoveries

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Announcements

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Artificial Intelligence

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Argonne researchers use AI to optimize a popular material coating technique in real time June 25th, 2021

Graphene key for novel hardware security May 10th, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Nanobiotechnology

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Immune system-stimulating nanoparticle could lead to more powerful vaccines: The potent new adjuvant could be used to help make vaccines against HIV and other infectious diseases December 3rd, 2021

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project