Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2

FLEET Research Fellow Dr Cheng Tan (RMIT)

CREDIT
FLEET
FLEET Research Fellow Dr Cheng Tan (RMIT) CREDIT FLEET

Abstract:
A RMIT-led, international collaboration published this week has observed large in-plane anisotropic magnetoresistance (AMR) in a quantum spin Hall insulator and the spin quantization axis of the edge states can be well-defined.

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2

Melbourne, Australia | Posted on November 5th, 2021

A quantum spin Hall insulator (QSHIs) is a two-dimensional state of matter with an insulating bulk and non-dissipative helical edge states that display spin-momentum locking, which are promising options for developing future low-energy nano-electronic and spintronic devices.

The FLEET collaboration of researchers at RMIT, UNSW and South China Normal University (China) confirm for the first time the existence of large in-plane AMR in monolayer WTe2 which is a novel QSHI with higher critical temperatures.

By allowing electrical conduction without wasted dissipation of energy, such materials could form the basis of a new future generation of ultra-low energy electronics.

FABRICATING MONOLAYER WTE2 DEVICES

The rise of topological insulators has offered significant hope for researchers seeking non-dissipative transport, and thus a solution to the already observed plateauing of Moore’s law.

Unlike previously-reported quantum-well systems, which could only exhibit quantized edge transport at low temperatures, the recent observation of quantized edge transport at 100 K in a predicted large band-gap QSHI, monolayer WTe2 , has shed more light on the applications of QSHI.

“Although we had gained much experience in stacking van der Waals (vdW) heterostructures, fabricating monolayer vdW devices was still challenging for us,” the study’s first author Dr Cheng Tan says.

“Because monolayer WTe2 nanoflakes are difficult to obtain, we firstly focused on a more mature material, graphene, to develop the best way for fabricating monolayer WTe2 vdW devices” says Cheng, who is a FLEET Research Fellow at RMIT University in Melbourne.

As the monolayer WTe2 nanoflakes are also very sensitive to the air, protective ‘suits of amours’ made of inert hBN nanoflakes should be utilized to encapsulate them. Additional, the assembly was carried out in an oxygen- and water-free glove box before series of tests outside. After some effort, the team then successfully fabricated the monolayer WTe2 devices with gate electrodes and observed typical transport behaviours of gated monolayer WTe2.

“For materials to be used in future spintronic devices, we need a method to determine spin characteristics, in particular the direction of spin,” says Dr Guolin Zheng (also at RMIT).

“However, in monolayer WTe2, spin-momentum locking (an essential property of QSHI) and whether spin quantization axis in its helical edge states could be determined had yet to be experimentally demonstrated.”

Anisotropic magnetoresistance (AMR) is an effective transport measurement method to reveal the relationship between the electrons’ spin and momentum when the current is spin-polarized.

Considering that the edge states of a QSHI only allow the transport of spin-polarized electrons, the team then used AMR measurements to explore the potential spin-momentum locking in the edge states of monolayer WTe2.

“Fortunately, we found the proper method to deal with the monolayer WTe2 nanoflakes,” says co-author Dr Feixiang Xiang (UNSW). “So then we performed angular-dependent transport measurements to explore the potential spin features in the edge states.”

PERFORMING ANISOTROPIC MAGNETORESISTANCE AND DEFINING THE SPIN QUANTIZATION AXIS

However, the topological edge states are not the only possible cause for spin-momentum locking and in-plane AMR effects in a QSHI. Rashba splitting could also generate similar effects, which may make the experimental results unclear.

“Fortunately, topological edge states and Rashba splitting induce very different gate-dependent in-plane AMR behaviours, because the band structure under these two situations are still very different.” says co-author Prof Alex Hamilton (also at UNSW).

“Most of the samples show that minimum of in-plane AMR happens when the magnetic field is nearly perpendicular to the edge current direction.” says Cheng.

Further theoretical calculations by collaborators at South China Normal University further confirmed that electrons’ spins in the edge states of monolayer WTe2 should be always perpendicular to their propagation directions, so-called ‘spin-momentum locking’.

“The amplitudes of the in-plane AMR observed in monolayer WTe2 is very large, up to 22%” says co-author A/Prof Lan Wang (also at RMIT).

“While the previous amplitudes of in-plane AMR in other 3D topological insulators are only around 1%. By AMR measurements, we can also precisely determine the spin quantization axis of the spin polarized electrons in the edge states.”

“Again, this work demonstrates the promising potential of QSHI for designing and developing novel spintronic devices and prove AMR as a useful tool for the design and development of QSHI-based spintronic devices, which are one of the promising routes for FLEET to realize low-energy devices in future.”

####

For more information, please click here

Contacts:
Errol Hunt
ARC Centre of Excellence in Future Low-Energy Electronics Technologies

Office: 042-313-9210
Expert Contact

Lan Wang
RMIT

Copyright © ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

THE STUDY

Related News Press

News and information

Drawing data in nanometer scale September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Quantum Physics

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Lattice distortion of perovskite quantum dots induces coherent quantum beating September 9th, 2022

Bound by light: Glass nanoparticles show unexpected coupling when levitated with laser light August 26th, 2022

Master equation to boost quantum technologies: FQXi-funded analysis will help physicists exert exquisitely precise real-time feedback control over quantum systems August 26th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Magnetism/Magnons

Scientists take control of magnetism at the microscopic level: Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity August 26th, 2022

‘Nanomagnetic’ computing can provide low-energy AI, researchers show May 6th, 2022

'Frustrated' nanomagnets order themselves through disorder: Interactions between alternating layers of exotic, 2D material create 'entropy-driven order' in a structured system of magnets at equilibrium April 8th, 2022

Possible Futures

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Spintronics

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

New road towards spin-polarised currents September 9th, 2022

Scientists take control of magnetism at the microscopic level: Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity August 26th, 2022

Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022

Chip Technology

Conformal optical black hole for cavity September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Quantum Computing

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

Upgrading your computer to quantum September 23rd, 2022

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Discoveries

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Announcements

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Conformal optical black hole for cavity September 30th, 2022

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project