Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2

FLEET Research Fellow Dr Cheng Tan (RMIT)

CREDIT
FLEET
FLEET Research Fellow Dr Cheng Tan (RMIT) CREDIT FLEET

Abstract:
A RMIT-led, international collaboration published this week has observed large in-plane anisotropic magnetoresistance (AMR) in a quantum spin Hall insulator and the spin quantization axis of the edge states can be well-defined.

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2

Melbourne, Australia | Posted on November 5th, 2021

A quantum spin Hall insulator (QSHIs) is a two-dimensional state of matter with an insulating bulk and non-dissipative helical edge states that display spin-momentum locking, which are promising options for developing future low-energy nano-electronic and spintronic devices.

The FLEET collaboration of researchers at RMIT, UNSW and South China Normal University (China) confirm for the first time the existence of large in-plane AMR in monolayer WTe2 which is a novel QSHI with higher critical temperatures.

By allowing electrical conduction without wasted dissipation of energy, such materials could form the basis of a new future generation of ultra-low energy electronics.

FABRICATING MONOLAYER WTE2 DEVICES

The rise of topological insulators has offered significant hope for researchers seeking non-dissipative transport, and thus a solution to the already observed plateauing of Moore’s law.

Unlike previously-reported quantum-well systems, which could only exhibit quantized edge transport at low temperatures, the recent observation of quantized edge transport at 100 K in a predicted large band-gap QSHI, monolayer WTe2 , has shed more light on the applications of QSHI.

“Although we had gained much experience in stacking van der Waals (vdW) heterostructures, fabricating monolayer vdW devices was still challenging for us,” the study’s first author Dr Cheng Tan says.

“Because monolayer WTe2 nanoflakes are difficult to obtain, we firstly focused on a more mature material, graphene, to develop the best way for fabricating monolayer WTe2 vdW devices” says Cheng, who is a FLEET Research Fellow at RMIT University in Melbourne.

As the monolayer WTe2 nanoflakes are also very sensitive to the air, protective ‘suits of amours’ made of inert hBN nanoflakes should be utilized to encapsulate them. Additional, the assembly was carried out in an oxygen- and water-free glove box before series of tests outside. After some effort, the team then successfully fabricated the monolayer WTe2 devices with gate electrodes and observed typical transport behaviours of gated monolayer WTe2.

“For materials to be used in future spintronic devices, we need a method to determine spin characteristics, in particular the direction of spin,” says Dr Guolin Zheng (also at RMIT).

“However, in monolayer WTe2, spin-momentum locking (an essential property of QSHI) and whether spin quantization axis in its helical edge states could be determined had yet to be experimentally demonstrated.”

Anisotropic magnetoresistance (AMR) is an effective transport measurement method to reveal the relationship between the electrons’ spin and momentum when the current is spin-polarized.

Considering that the edge states of a QSHI only allow the transport of spin-polarized electrons, the team then used AMR measurements to explore the potential spin-momentum locking in the edge states of monolayer WTe2.

“Fortunately, we found the proper method to deal with the monolayer WTe2 nanoflakes,” says co-author Dr Feixiang Xiang (UNSW). “So then we performed angular-dependent transport measurements to explore the potential spin features in the edge states.”

PERFORMING ANISOTROPIC MAGNETORESISTANCE AND DEFINING THE SPIN QUANTIZATION AXIS

However, the topological edge states are not the only possible cause for spin-momentum locking and in-plane AMR effects in a QSHI. Rashba splitting could also generate similar effects, which may make the experimental results unclear.

“Fortunately, topological edge states and Rashba splitting induce very different gate-dependent in-plane AMR behaviours, because the band structure under these two situations are still very different.” says co-author Prof Alex Hamilton (also at UNSW).

“Most of the samples show that minimum of in-plane AMR happens when the magnetic field is nearly perpendicular to the edge current direction.” says Cheng.

Further theoretical calculations by collaborators at South China Normal University further confirmed that electrons’ spins in the edge states of monolayer WTe2 should be always perpendicular to their propagation directions, so-called ‘spin-momentum locking’.

“The amplitudes of the in-plane AMR observed in monolayer WTe2 is very large, up to 22%” says co-author A/Prof Lan Wang (also at RMIT).

“While the previous amplitudes of in-plane AMR in other 3D topological insulators are only around 1%. By AMR measurements, we can also precisely determine the spin quantization axis of the spin polarized electrons in the edge states.”

“Again, this work demonstrates the promising potential of QSHI for designing and developing novel spintronic devices and prove AMR as a useful tool for the design and development of QSHI-based spintronic devices, which are one of the promising routes for FLEET to realize low-energy devices in future.”

####

For more information, please click here

Contacts:
Errol Hunt
ARC Centre of Excellence in Future Low-Energy Electronics Technologies

Office: 042-313-9210
Expert Contact

Lan Wang
RMIT

Copyright © ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

THE STUDY

Related News Press

Quantum Physics

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Highest degree of purity achieved for polarized X-rays: Helmholtz Institute Jena opens up new possibilities at the European X-ray laser European XFEL May 6th, 2022

New hardware integrates mechanical devices into quantum tech April 22nd, 2022

New quantum network shares information at a scale practical for future real-world applications: Researchers enable real-time adjustments to communication among three remote nodes in a quantum network April 22nd, 2022

News and information

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Magnetism/Magnons

‘Nanomagnetic’ computing can provide low-energy AI, researchers show May 6th, 2022

Possible Futures

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Spintronics

Magnet-free chiral nanowires for spintronic devices March 18th, 2022

NGI advances graphene spintronics as 1D contacts improve mobility in nano-scale devices February 11th, 2022

Terahertz light-driven spin-lattice control: A new potential path to faster and more efficient data storage January 7th, 2022

New version of organic electronics for rational management of energy: Researchers of the UMA study the possibility of altering carbon to create chips with a higher capacity than those used nowadays made of electronic silicon December 10th, 2021

Chip Technology

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022

Quantum Computing

New error mitigation approach helps quantum computers level up: New error mitigation approach helps quantum computers level up, ASCR: Quantum computers are prone to errors that limit their usefulness in scientific research May 6th, 2022

In balance: Quantum computing needs the right combination of order and disorder: Study shows that disorder in quantum computer chips needs to be designed to perfection / Publication in ‘Nature Communications’ May 6th, 2022

New hardware integrates mechanical devices into quantum tech April 22nd, 2022

Graphene-hBN breakthrough to spur new LEDs, quantum computing: Study uncovers first method for producing high-quality, wafer-scale, single-layer hexagonal boron nitride April 15th, 2022

Discoveries

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Announcements

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project