Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An artificial material that can sense, adapt to its environment: University of Missouri engineers are collaborating with researchers at University of Chicago to design the material

Guoliang Huang is the Huber and Helen Croft Chair in Engineering at the University of Missouri College of Engineering.

CREDIT
University of Missouri
Guoliang Huang is the Huber and Helen Croft Chair in Engineering at the University of Missouri College of Engineering. CREDIT University of Missouri

Abstract:
Move over, Hollywood — science fiction is getting ready to leap off the big screen and enter the real world. While recent science fiction movies have demonstrated the power of artificially intelligent computer programs, such as the fictional character J.A.R.V.I.S. in the Avenger film series, to make independent decisions to carry out a set of actions, these imagined movie scenarios could now be closer to becoming a reality.

An artificial material that can sense, adapt to its environment: University of Missouri engineers are collaborating with researchers at University of Chicago to design the material

Columbia, MO | Posted on November 5th, 2021

In a recent study published in Nature Communications, a journal of Nature, researchers at the University of Missouri and University of Chicago have developed an artificial material, called a metamaterial, which can respond to its environment, independently make a decision, and perform an action not directed by a human being. For example, a drone making a delivery might evaluate its environment including wind direction, speed or wildlife, and automatically change course in order to complete the delivery safely.

Guoliang Huang, Huber and Helen Croft Chair in Engineering, and co-author on the study, said the mechanical design of their new artificial material incorporates three main functions also displayed by materials found in nature — sensing; information processing; and actuation, or movement.

Some examples of these natural materials include the quick reaction of a Venus fly trap’s leafy jaws to capture an insect, chameleons changing the color of their skin to blend into their surroundings, and pine cones adjusting their shapes in response to changes in air humidity, Huang said.

“Basically, we are controlling how this material responds to changes in external stimuli found in its surroundings,” Huang said. “For example, we can apply this material to stealth technology in the aerospace industry by attaching the material to aerospace structures. It can help control and decrease noises coming from the aircraft, such as engine vibrations, which can increase its multifunctional capabilities.”

The material uses a computer chip to control or manipulate the processing of information that’s needed to perform the requested actions, then uses the electrical power to convert that energy into mechanical energy. The researchers’ next step is to implement their idea in a real-world environment.

“Realization of active metamaterials with odd micropolar elasticity,” was published in Nature Communications. Co-authors include Yangyang Chen and Xiaopeng Li at MU and Colin Scheibner and Vincenzo Vitelli at the University of Chicago.

Funding is provided by grants from the Air Force Office of Scientific Research (AF9550-18-1-0342 and AF 9550-20-0279), the Army Research Office (W911NF-18-1-0031 and W911NF-19-1-0268) and the National Science Foundation Graduate Research Fellowship (1746045). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

####

For more information, please click here

Contacts:
Eric Stann
University of Missouri-Columbia

Office: 573-882-3346

Copyright © University of Missouri-Columbia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Drawing data in nanometer scale September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Drawing data in nanometer scale September 30th, 2022

New technique allows researchers to scrape beyond the surface of nanomaterials: Using a new secondary-ion mass spectrometry technique, research are getting a fresh look at MXenes and MAX phases September 23rd, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022

Possible Futures

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Discoveries

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Materials/Metamaterials

New technique allows researchers to scrape beyond the surface of nanomaterials: Using a new secondary-ion mass spectrometry technique, research are getting a fresh look at MXenes and MAX phases September 23rd, 2022

Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals September 23rd, 2022

Upgrading your computer to quantum September 23rd, 2022

Digging a little deeper: New Earth Science Frontiers study explores the nanoscale properties of the Gulong shale oil reservoir: A new study elucidates the role of nanoscopic spaces in the in situ accumulation of shale oil in the Gulong-Qingshankou reservoir in China September 9th, 2022

Announcements

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Conformal optical black hole for cavity September 30th, 2022

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Military

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022

Understanding outsize role of nanopores: New research reveals differences in pH, and more, about these previously mysterious environments August 26th, 2022

New chip ramps up AI computing efficiency August 19th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project