Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics

A cutaway schematic shows the two-photon enabled printing process for silica structures with sub-200 nanometer resolution. Materials scientists at Rice University say the technique could make it practical to print micro-scale electronic, mechanical and photonic devices. (Credit: Illustration by Boyu Zhang/Rice University)
A cutaway schematic shows the two-photon enabled printing process for silica structures with sub-200 nanometer resolution. Materials scientists at Rice University say the technique could make it practical to print micro-scale electronic, mechanical and photonic devices. (Credit: Illustration by Boyu Zhang/Rice University)

Abstract:
Weaving intricate, microscopic patterns of crystal or glass is now possible thanks to engineers at Rice University.

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics

Houston, TX | Posted on October 15th, 2021

Rice materials scientists are creating nanostructures of silica with a sophisticated 3D printer, demonstrating a method to make micro-scale electronic, mechanical and photonic devices from the bottom up. The products can be doped and their crystal structures tuned for various applications.

The study led by Jun Lou, a professor of materials science and nanoengineering at the George R. Brown School of Engineering, appears in Nature Materials.

The electronics industry is built upon silicon, the basic semiconducting substrate for microprocessors for decades. The Rice study addresses the limitations of top-down manufacturing by turning the process on its head.

“It’s very tough to make complicated, three-dimensional geometries with traditional photolithography techniques,” Lou said. “It’s also not very ‘green’ because it requires a lot of chemicals and a lot of steps. And even with all that effort, some structures are impossible to make with those methods.

“In principle, we can print arbitrary 3D shapes, which could be very interesting for making exotic photonic devices,” he said. “That’s what we’re trying to demonstrate.”

The lab uses a two-photon polymerization process to print structures with lines only several hundred nanometers wide, smaller than the wavelength of light. Lasers “write” the lines by prompting the ink to absorb two photons, initiating free-radical polymerization of the material.

“Normal polymerization involves polymer monomers and photoinitiators, molecules that absorb light and generate free radicals,” said Rice graduate student and co-lead author Boyu Zhang of the process that commonly uses ultraviolet light in 3D printing and to cure coatings and in dental applications.

“In our process, the photoinitiators absorb two photons at the same time, which requires a lot of energy,” he said. “Only a very small peak of this energy causes polymerization, and that in only a very tiny space. That’s why this process allows us to go beyond the diffraction limit of light.”

The printing process required the Rice lab to develop a unique ink. Zhang and co-lead author Xiewen Wen, a Rice alumnus, created resins containing nanospheres of silicon dioxide doped with polyethylene glycol to make them soluble.

After printing, the structure is solidified through high-temperature sintering, which eliminates all the polymer from the product, leaving amorphous glass or polycrystalline cristobalite. “When heated, the material goes through phases from glass to crystal, and the higher the temperature, the more ordered the crystals become,” Lou said.

The lab also demonstrated doping the material with various rare earth salts to make the products photoluminescent, an important property for optical applications. The lab’s next goal is to refine the process to achieve sub-10 nanometer resolution.

Co-authors of the paper are Rice assistant research professor Hua Guo, research scientists Guanhui Gao and Xiang Zhang, alumnus Yushun Zhao and graduate students Qiyi Fang and Christine Nguyen; Rice alumnus Fan Ye of Tsinghua University, Beijing; University of Houston alumnus Shuai Yue, now a postdoctoral researcher at the Chinese Academy of Sciences; and Jiming Bao, a professor of electrical and computer engineering at the University of Houston.

Co-principal investigators are Rice alumnus Weipeng Wang, now a professor at Tsinghua University, China; and Rice’s Jacob Robinson, an associate professor of electrical and computer engineering and of bioengineering, and Pulickel Ajayan, chair of the Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The Welch Foundation (C-1716, E-1728) supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 4,052 undergraduates and 3,484 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

The Nanomaterials, Nanomechanics and Nanodevices Lab (Lou group):

Department of Materials Science and NanoEngineering:

George R. Brown School of Engineering:

Related News Press

News and information

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

3D & 4D printing/Additive-manufacturing

New 3D-Bioprinter + Bioink Use Living Cells Straight From Culture Plate: Cell models mimicking natural tissue topography herald new era for biomedical research April 13th, 2021

Dynamic 3D printing process features a light-driven twist: Light provides freedom to control each layer and improves precision and speed February 4th, 2021

Russian scientists improve 3D printing technology for aerospace composites using oil waste November 27th, 2020

Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020

Possible Futures

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Chip Technology

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Visualizing temperature transport: An unexpected technique for nanoscale characterization November 19th, 2021

Optical computing/Photonic computing

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum Collaboration: Two UCSB scientists receive award to partner with Cisco’s new Quantum Research Team November 3rd, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Discoveries

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Announcements

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Light speed advances: UD Prof. Tingyi Gu receives DARPA Young Faculty Award December 3rd, 2021

Immune system-stimulating nanoparticle could lead to more powerful vaccines: The potent new adjuvant could be used to help make vaccines against HIV and other infectious diseases December 3rd, 2021

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

Photonics/Optics/Lasers

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project