Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultrasound at the nanometre scale reveals the nature of force

The figure describes the picosecond ultrasonics technique to probe atomic bonds and vdW forces in In2Se3. In the experiment, blue-coloured pump laser pulses are shined on a flake of 2D material, and red-coloured probe laser pules are used to probe the strength of atomic bonds.

CREDIT
Wenjing Yan, University of Nottingham
The figure describes the picosecond ultrasonics technique to probe atomic bonds and vdW forces in In2Se3. In the experiment, blue-coloured pump laser pulses are shined on a flake of 2D material, and red-coloured probe laser pules are used to probe the strength of atomic bonds. CREDIT Wenjing Yan, University of Nottingham

Abstract:
Researchers have developed a new method to measure force and atomic bonds at the nanoscale that reveals that the speed of sound depends on the structure it is travelling through.

Ultrasound at the nanometre scale reveals the nature of force

Nottingham, UK | Posted on September 17th, 2021

Scientists from the University of Nottingham and Loughborough University used a measurement method called picosecond ultrasonics, similar to medical ultrasound, to measure the strength of atom bonding within material. Their research has been published in Advanced Functional Materials.

Force is fundamental to everything in daily life. From as large-scale as gravitational force that underlines the operation of the whole universe, to as small-scale as electron-electron interaction that can be hair raising. Force is very difficult to measure especially when the forces are too big or too small, this is especially the case when we enter the nanoworld, for example in the so-called two-dimensional van der Waals (2D-vdW) materials where objects have length scales in the range of 10-9 metres.

These materials are called 2D materials because their geometrical, physical and chemical properties are confined in two dimensions within a thin sheet of material. Within the sheet, atoms are tightly bonded to each other through strong covalent or ionic bonds, whereas the layers themselves are held together by weak van der Waals force. The utterly different nature and coexistence of these vastly different strength forces allow scientists to “peel” the material from bulky mined crystals to perfect single atomic layers and discover amazing phenomena including room temperature superconductivity. Drawing on a piece of paper using pencils for example, is in fact a scientific experiment to make single atomic layers of carbon atoms (graphene), something we all have been doing for centuries without realising. Despite intensive investigation of vdW materials by many research groups around the world, there are barely any experimental techniques to measure the strength of atomic bonds and vdW forces without destroying the materials.

Wenjing Yan was one of the lead researchers from the School of Physics and Astronomy at University of Nottingham, she explains: “We used picosecond ultrasonics to measure both the strong covalent bonds and weak vdW forces without damaging the material. The technique is similar to medical ultrasound but with a much higher frequency (terahertz) and thus non-invasive. The study shines 120 femtosecond (0.00000000000012 second) “pump” laser pulses on flakes of 2D materials, generating phonons which are quantised sound waves. As phonons travel through the material, they feel and interact with the atoms and the bonds within the material. The properties of these phonons, which reflect the strength of the atomic bonds, is then measured by a second “probe” laser pulse. We found that sound travels at very different speeds in different phases (structures) of the same substance.”

Alexander Balanov and Mark Greenaway from Loughborough University expand: “Whilst travelling through the vdW material, the ultrasonic acoustic wave does not destroy the crystal, only slightly deforms it, which means the structure can be thought of as a system of “springs”. By knowing the speed of sound from measurements and how these springs respond to the deformation, we can extract the relative strength of the covalent forces between the atoms and the vdW forces between the layers. If we apply so-called density function theory with the help of high performance computers we can numerically estimate these forces for different stacking configurations and suggest how to tune the elastic, electric and even chemical properties of different polymorphs of vdW materials”

Wenjing continues: “A good analogy for our findings can be made by thinking about pancake and Yorkshire pudding! Both foods are made from the same mixture: egg, flour and milk, but their different cooking processes give them different structures and properties. Although this is obvious in the macroscopic world, finding such differences in nanostructured materials due to subtle differences in vdW forces is surprising and exciting. This opens possibilities to tune vdW forces by stacking materials in different ways and at the same time non-destructively monitor the properties of these forces and their correlation with the physical and chemical properties of the multilayer structure. By doing this, we will be able to design the material for purpose just like building Lego blocks as proposed by the Nobel Prize laureates Andre Geim and Konstantin Novoselov.”

####

For more information, please click here

Contacts:
Emma Thorne
University of Nottingham

Office: 115-951-5798
Expert Contact

Wenjing Yan
University of Nottingham

Copyright © University of Nottingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Tools

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project