Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system

New experiments using trapped one-dimensional quantum gases fit with the predictions of the recently developed theory of generalized hydrodynamics. Graph showing the time evolution of the quasiparticle momentum distribution—a property of the atoms in the gases—in a bundle of one-dimensional gases. The experimental data (red lines) nearly perfectly match the predictions of generalized hydrodynamics theory (blue lines).

CREDIT
Weiss Laboratory, Penn State
New experiments using trapped one-dimensional quantum gases fit with the predictions of the recently developed theory of generalized hydrodynamics. Graph showing the time evolution of the quasiparticle momentum distribution—a property of the atoms in the gases—in a bundle of one-dimensional gases. The experimental data (red lines) nearly perfectly match the predictions of generalized hydrodynamics theory (blue lines). CREDIT Weiss Laboratory, Penn State

Abstract:
New experiments using trapped one-dimensional gases—atoms cooled to the coldest temperatures in the universe and confined so that they can only move in a line—fit with the predictions of the recently developed theory of “generalized hydrodynamics.” Quantum mechanics is necessary to describe the novel properties of these gases. Achieving a better understanding of how such systems with many particles evolve in time is a frontier of quantum physics. The result could greatly simplify the study of quantum systems that have been excited out of equilibrium. Besides its fundamental importance, it could eventually inform the development of quantum-based technologies, which include quantum computers and simulators, quantum communication, and quantum sensors. A paper describing the experiments by a team led by Penn State physicists appears September 2, 2021 in the journal Science.

Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system

University Park, PA | Posted on September 3rd, 2021

Even within classical physics, where the additional complexities of quantum mechanics can be ignored, it is impossible to simulate the motion of all the atoms in a moving fluid. To approximate these systems of particles, physicists use hydrodynamics descriptions.

“The basic idea behind hydrodynamics is to forget about the atoms and consider the fluid as a continuum,” said Marcos Rigol, professor of physics at Penn State and one of the leaders of the research team. “To simulate the fluid, one ends up writing coupled equations that result from imposing a few constraints, such as the conservation of mass and energy. These are the same types of equations solved, for example, to simulate how air flows when you open windows to improve ventilation in a room.”

Matter becomes more complicated if quantum mechanics is involved, as is the case when one wants to simulate quantum many-body systems that are out of equilibrium.

“Quantum many body systems—which are composed of many interacting particles, such as atoms—are at the heart of atomic, nuclear, and particle physics,” said David Weiss, Distinguished Professor of Physics at Penn State and one of the leaders of the research team. “It used to be that except in extreme limits you couldn’t do a calculation to describe out-of-equilibrium quantum many-body systems. That recently changed.”

The change was motivated by the development of a theoretical framework known as generalized hydrodynamics.

“The problem with those quantum many-body systems in one dimension is that they have so many constraints on their motion that regular hydrodynamics descriptions cannot be used,” said Rigol. “Generalized hydrodynamics was developed to keep track of all those constraints.”

Until now, generalized hydrodynamics had only previously been experimentally tested under conditions where the strength of interactions among particles was weak.

“We set out to test the theory further, by looking at the dynamics of one dimensional gases with a wide range of interaction strengths,” said Weiss. “The experiments are extremely well controlled, so the results can be precisely compared to the predictions of this theory.

The research team uses one dimensional gases of interacting atoms that are initially confined in a very shallow trap in equilibrium. They then very suddenly increase the depth of the trap by 100 times, which forces the particles to collapse into the center of the trap, causing their collective properties to change. Throughout the collapse, the team precisely measures their properties, which they can then compare to the predictions of generalized hydrodynamics.

“Our measurements matched the prediction of theory across dozens of trap oscillations,” said Weiss. “There currently aren’t other ways to study out-of-equilibrium quantum systems for long periods of time with reasonable accuracy, especially with a lot of particles. Generalized hydrodynamics allow us to do this for some systems like the one we tested, but how generally applicable it is still needs to be determined.”

###

In addition to Weiss and Rigol, the research team includes Neel Malvania, Yicheng Zhang, and Yuan Le at Penn State; and Jerome Dubail at Université de Lorraine in France. The research was funded by the U.S. National Science Foundation and the U.S. Army Research Office.

####

For more information, please click here

Contacts:
Sam Sholtis


Office: 814-865-1390
Expert Contacts

David Weiss


Office: (814) 863-3076
Marcos Rigol


Office: (814) 865-6460

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum Physics

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Quantum chemistry

Dawn of solid-state quantum networks: Researchers demonstrated high-visibility quantum interference between two independent semiconductor quantum dots — an important step toward scalable quantum networks January 6th, 2023

New quantum computing architecture could be used to connect large-scale devices: Researchers have demonstrated directional photon emission, the first step toward extensible quantum interconnects January 6th, 2023

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Vertical electrochemical transistor pushes wearable electronics forward: Biomedical sensing is one application of efficient, low-cost transistors January 20th, 2023

Possible Futures

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Quantum Computing

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

Dawn of solid-state quantum networks: Researchers demonstrated high-visibility quantum interference between two independent semiconductor quantum dots — an important step toward scalable quantum networks January 6th, 2023

Discoveries

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Announcements

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

Military

Vertical electrochemical transistor pushes wearable electronics forward: Biomedical sensing is one application of efficient, low-cost transistors January 20th, 2023

New quantum computing architecture could be used to connect large-scale devices: Researchers have demonstrated directional photon emission, the first step toward extensible quantum interconnects January 6th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project