Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies

RESEARCHERS HAVE PRESENTED A STRATEGY BY SIMULTANEOUSLY INTRODUCING LIGHT-SWITCHABLE OXYGEN VACANCY AND DOPING Mo INTO BI5O7BR NANOSHEETS FOR EFFICIENT PHOTOCATALYTIC N2 FIXATION. THE MODIFIED PHOTOCATALYST HAS ACHIEVED ELEVATED N2 FIXATION PHOTOACTIVITIES BY VIRTUE OF THE OPTIMIZED CONDUCTION BAND POSITION, ENHANCED LIGHT AVAILABILITY, IMPROVED N2 ADSORPTION AND CHARGE CARRIER SEPARATION.

CREDIT
Chinese Journal of Catalysis
RESEARCHERS HAVE PRESENTED A STRATEGY BY SIMULTANEOUSLY INTRODUCING LIGHT-SWITCHABLE OXYGEN VACANCY AND DOPING Mo INTO BI5O7BR NANOSHEETS FOR EFFICIENT PHOTOCATALYTIC N2 FIXATION. THE MODIFIED PHOTOCATALYST HAS ACHIEVED ELEVATED N2 FIXATION PHOTOACTIVITIES BY VIRTUE OF THE OPTIMIZED CONDUCTION BAND POSITION, ENHANCED LIGHT AVAILABILITY, IMPROVED N2 ADSORPTION AND CHARGE CARRIER SEPARATION. CREDIT Chinese Journal of Catalysis

Abstract:
The issue to achieve efficient nitrogen (N2) reduction to ammonia (NH3) has posed a significant challenge for decades as the inert N≡N bond could be hardly broken because of the extremely large bond energy of 940.95 kJ mol–1. To date, the industrial fixation of N2 to NH3 is monopolized by the energy-intensive Haber-Bosch process (673-873 K and 15-25 MPa), which unsustainably employs natural gas to make the hydrogen (H2) feedstock with enormous energy consumption from fossil fuels, leading to a large amount of carbon dioxide (CO2) emission. In this context, photocatalytic N2 reduction is regarded as a sustainable alternative way for NH3 synthesis from N2 and water under ambient conditions.

Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies

Beijing, China | Posted on September 3rd, 2021

However, the efficiency of most traditional photocatalysts is still far from satisfactory mainly due to the hard bond dissociation of the inert N2, which results from the weak binding of N2 to the catalytic material and further inefficient electron transfer from photocatalyst into the antibonding orbitals of N2. In order to promote efficiency of N2 photofixation, introducing the electron-donating centers as the catalytic activation sites for optimizing the N2 adsorption properties and improving the photoexcited charge transport in the catalysts is a promising strategy.

Oxygen vacancy (OV) represents the most widely and prevalent studied type of surface defect for N2 fixation. On one hand, OV can be facilely created for its relatively low formation energy; on the other hand, OV can assist photocatalysts to gain exciting N2 fixation photoactivity by virtue of its superiority in N2 capture and activation. Therefore, a semiconductor with sufficient OVs may be favorable to improve their N2 fixation performance. Transition metal (TM) doping is another widely investigated effective method to improve the photoactivity of N2 fixation, because the TM species possess the advantageous ability of binding (and even functionalizing) with inert N2 at low temperatures due to their empty and occupied d-orbitals, which can achieve the TM-N2 interaction via “acceptance-donation” of electrons. Mo, as a critical element of the catalytic center in mysterious Mo-dependent nitrogenase, has attracted a lot of attention for the N2 fixation. To this end, OVs-rich and Mo-doped materials would be ideal candidates for N2 photofixation. In addition, layered bismuth oxybromide (BiOBr) materials have attracted numerous attentions because of their suitable band gaps and unique layer structures. For BiOBr-based semiconductors, such as Bi3O4Br and Bi5O7Br, it has been revealed that OV with sufficient localized electrons on their surface facilitates the capture and activation of inert N2 molecules.

Recently, a research team led by Prof. Yi-Jun Xu from Fuzhou University, China reported that the introduction of OVs and Mo dopant into Bi5O7Br nanosheets can remarkably improve the photoactivity of N2 fixation. The modified photocatalysts have showed the optimized conduction band position, the enhanced light absorption, the improved N2 adsorption and charge carrier separation, which jointly contribute to the elevating N2 fixation photoactivities. This work provides a promising approach to design photocatalysts with light-switchable OVs for N2 reduction to NH3 under mild conditions, highlighting the wide application scope of nanostructured BiOBr-based photocatalysts as effective N2 fixation systems.

####

About Dalian Institute of Chemical Physics, Chinese Academy Sciences
About the Journal

Chinese Journal of Catalysis is co-sponsored by Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Chinese Chemical Society, and it is currently published by Elsevier group. This monthly journal publishes in English timely contributions of original and rigorously reviewed manuscripts covering all areas of catalysis. The journal publishes Reviews, Accounts, Communications, Articles, Highlights, Perspectives, and Viewpoints of highly scientific values that help understanding and defining of new concepts in both fundamental issues and practical applications of catalysis. Chinese Journal of Catalysis ranks among the top six journals in Applied Chemistry with a current SCI impact factor of 8.271. The Editors-in-Chief are Profs. Can Li and Tao Zhang.

At Elsevier http://www.journals.elsevier.com/chinese-journal-of-catalysis

Manuscript submission https://mc03.manuscriptcentral.com/cjcatal

For more information, please click here

Contacts:
Fan He
Dalian Institute of Chemical Physics, Chinese Academy Sciences

Office: 86-411-843-79240

Copyright © Dalian Institute of Chemical Physics, Chinese Academy Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results were published in Chinese Journal of Catalysis:

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Chemistry

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Inspired by photosynthesis, scientists double reaction quantum efficiency October 1st, 2021

Unprecedented view of a single catalyst nanoparticle at work: X-rays reveal compositional changes on active surface under reaction conditions October 1st, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Discoveries

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Food/Agriculture/Supplements

Unprecedented view of a single catalyst nanoparticle at work: X-rays reveal compositional changes on active surface under reaction conditions October 1st, 2021

‘Anti-rust’ coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Environment

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Light-harvesting nanoparticle catalysts show promise in quest for renewable carbon-based fuels June 25th, 2021

Active platinum species: Catalytic high-temperature oxidations: Individual atom or metal cluster? June 16th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project