Home > Press > Rice physicists find 'magnon' origins in 2D magnet: Topological feature could prove useful for encoding information in electron spins
![]() |
| Rice University graduate student Lebing Chen used a high-temperature furnace to make chromium triiodide crystals that yielded the 2D materials for experiments at Oak Ridge National Laboratory's Spallation Neutron Source. CREDIT Photo by Jeff Fitlow/Rice University |
Abstract:
Rice physicists have confirmed the topological origins of magnons, magnetic features they discovered three years ago in a 2D material that could prove useful for encoding information in the spins of electrons.
The discovery, described in a study published online this week in the American Physical Society journal PRX, provides a new understanding of topology-driven spin excitations in materials known as in 2D van der Waals magnets. The materials are of growing interest for spintronics, a movement in the solid-state electronics community toward technologies that use electron spins to encode information for computation, storage and communications.
Spin is an intrinsic feature of quantum objects and the spins of electrons play a key role in bringing about magnetism.
Rice physicist Pengcheng Dai, co-corresponding author of the PRX study, said inelastic neutron-scattering experiments on the 2D material chromium triiodine confirmed the origin of the topological nature of spin excitations, called magnons, that his group and others discovered in the material in 2018.
The group's latest experiments at Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source showed "spin-orbit coupling induces asymmetric interactions between spins" of electrons in chromium triiodine, Dai said. "As a result, the electron spins feel the magnetic field of moving nuclei differently, and this affects their topological excitations."
In van der Waals materials, atomically thin 2D layers are stacked like pages in a book. The atoms within layers are tightly bonded, but the bonds between layers are weak. The materials are useful for exploring unusual electronic and magnetic behaviors. For example, a single 2D sheet of chromium triiodine has the same sort of magnetic order that makes magnetic decals stick to a metal refrigerator. Stacks of three or more 2D layers also have that magnetic order, which physics call ferromagnetic. But two stacked sheets of chromium triiodine have an opposite order called antiferromagnetic.
That strange behavior led Dai and colleagues to study the material. Rice graduate student Lebing Chen, the lead author of this week's PRX study and of the 2018 study in the same journal, developed methods for making and aligning sheets of chromium triiodide for experiments at ORNL. By bombarding these samples with neutrons and measuring the resulting spin excitations with neutron time-of-flight spectrometry, Chen, Dai and colleagues can discern unknown features and behaviors of the material.
In their previous study, the researchers showed chromium triiodine makes its own magnetic field thanks to magnons that move so fast they feel as if they are moving without resistance. Dai said the latest study explains why a stack of two 2D layers of chromium triiodide has antiferromagnetic order.
"We found evidence of a stacking-dependent magnetic order in the material," Dai said. Discovering the origins and key features of the state is important because it could exist in other 2D van der Waals magnets.
Additional co-authors include Bin Gao of Rice, Jae-Ho Chung of Korea University, Matthew Stone, Alexander Kolesnikov, Barry Winn, Ovidiu Garlea and Douglas Abernathy of ORNL, and Mathias Augustin and Elton Santos of the University of Edinburgh.
The research was funded by the National Science Foundation (1700081), the Welch Foundation (C-1839), the National Research Foundation of Korea (2020R1A5A1016518, 2020K1A3A7A09077712), the United Kingdom's Engineering and Physical Research Council and the University of Edinburgh and made use of facilities provided by the United Kingdom's ARCHER National Supercomputing Service and the Department of Energy's Office of Science.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 4,052 undergraduates and 3,484 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.
For more information, please click here
Contacts:
Jade Boyd
Office: 713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
DOI: 10.1103/PhysRevX.11.031047
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Magnetism/Magnons
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
2 Dimensional Materials
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||