Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > DTU researchers tighten grip on quantum computer: In a new groundbreaking work, researchers from DTU have now realized the complete platform for an optical quantum computer

The quantum computer technology developed at DTU Physics differs significantly from the superconducting platforms most frequently described. Everything is, in fact, done with laser light and at room temperature. For now, the light is guided by mirrors and optical fibres, but researchers already have a plan for how to compress all elements in a small optical chip.

CREDIT
Photo: Jonas S. Neergaard-Nielsen
The quantum computer technology developed at DTU Physics differs significantly from the superconducting platforms most frequently described. Everything is, in fact, done with laser light and at room temperature. For now, the light is guided by mirrors and optical fibres, but researchers already have a plan for how to compress all elements in a small optical chip. CREDIT Photo: Jonas S. Neergaard-Nielsen

Abstract:
Optical quantum computers have long been overshadowed by superconducting technologies that have been accelerated by huge development programmes run at tech giants like IBM and Google. The situation is now changing, one reason being a string of pioneering projects performed by researchers at the basic research centre bigQ at DTU Physics.

DTU researchers tighten grip on quantum computer: In a new groundbreaking work, researchers from DTU have now realized the complete platform for an optical quantum computer

Kgs. Lyngby, Denmark | Posted on August 13th, 2021

In fact, the researchers at DTU are not limiting themselves to simply developing individual components for an optical quantum computer or just a quantum simulator. They are working determinedly on developing a universal measurement-based optical quantum computer.

Can run any arbitrary algorithm

Although the type of quantum computer that the DTU researchers are developing is conceptually very different from a normal computer, there are also similarities.

There are some basic logical devices (qubits) that carry the information, and there are gates that perform operations on one or more qubits, thus implementing an algorithm.
The demonstration of a so-called universal gate set—and the implementation of a number of operations by means thereof—is precisely what constitutes the new advance in optical quantum computing.

“Our demonstration of a universal set of gates is absolutely crucial. It means that any arbitrary algorithm can be realized on our platform given the right inputs, namely optical qubits. The computer is fully programmable,” says Mikkel Vilsbøll Larsen, who has been the main driving force behind the work and who recently completed his PhD studies at DTU.

Scaling makes quantum computer practically relevant

The potential of the quantum computer is enormous, and its dramatically increased processing power relative to standard transistor-based computers will enable disruptive innovation in a wide range of areas of great importance to Denmark, such as the pharmaceutical industry, optimization of the transport sector, and development of materials for carbon capture and storage.

A crucial factor in fulfilling this potential is that the quantum computer is realized on a platform that is scalable to thousands of qubits, explains Senior Researcher Jonas S. Neergaard-Nielsen, who is one of the mainstays of the work.

“Theoretically, there’s no difference between whether a quantum computer is based on superconducting or optical qubits. But there’s a decisive practical difference. Superconducting quantum computers are limited to the number of qubits fabricated on the specific processor chip. In our system, we’re constantly creating new ones and entangling them quantum mechanically with those we are performing calculations on. This means that our platform is easily scalable.”

“In addition, we don’t need to cool everything down in large cryostats. Instead, we can do it all at room temperature in optical fibres. The fact that the system is based on optical fibres also means that it can be connected directly to a future quantum Internet, without difficult intermediaries.”

The researchers passed the scaling milestone already back in 2019 when — in an article in Science — they accounted for how, as some of the first in the world, they had produced the basic structure for a measurement-based optical quantum computer—a so-called two-dimensional cluster state with over 30,000 entangled light states.

Already looking determinedly ahead

Although they might be tempted to rest on their laurels for just a while, the team of researchers already have new goals in their sight.

Earlier this year, they developed and patented a full theoretical framework for how their technology can also embrace error correction in the long term. This is one of the great current challenges for quantum computing technology.

“It’s an important research result we’ve just published, and we’re proud of it. But our ambitions go much further than that. The long-term goal is a quantum computer that can solve relevant problems and fulfil the potential we’re all striving towards,” says Professor Ulrik L. Andersen, who is head of bigQ and has supervised the whole research programme.

"We know what it takes to place our current technology on an optical chip and introduce error correction, and we have the relevant international collaborations in place. The same applies to the corporate sector, where companies are eager to develop use cases with us.”

In other words, the researchers at DTU are ready for the next challenges and to take the next step from basic research to innovation. In fact, funding is the only thing missing.

###

Fact box

A universal quantum computer is fully programmable in the sense that it contains a set of logical operations that makes it possible to run any kind of algorithm.

A quantum simulator is a piece of hardware designed to perform a very specific calculation task. It cannot be programmed, but is hard coded to run one specific algorithm.

####

For more information, please click here

Contacts:
Louise Simonsen

Office: 452-814-3624
Expert Contact

Ulrik Lund Andersen

Office: +45 45 25 33 06
Cell: +45 29 85 60 67

Copyright © Technical University of Denmark

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project