Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > DTU researchers tighten grip on quantum computer: In a new groundbreaking work, researchers from DTU have now realized the complete platform for an optical quantum computer

The quantum computer technology developed at DTU Physics differs significantly from the superconducting platforms most frequently described. Everything is, in fact, done with laser light and at room temperature. For now, the light is guided by mirrors and optical fibres, but researchers already have a plan for how to compress all elements in a small optical chip.

CREDIT
Photo: Jonas S. Neergaard-Nielsen
The quantum computer technology developed at DTU Physics differs significantly from the superconducting platforms most frequently described. Everything is, in fact, done with laser light and at room temperature. For now, the light is guided by mirrors and optical fibres, but researchers already have a plan for how to compress all elements in a small optical chip. CREDIT Photo: Jonas S. Neergaard-Nielsen

Abstract:
Optical quantum computers have long been overshadowed by superconducting technologies that have been accelerated by huge development programmes run at tech giants like IBM and Google. The situation is now changing, one reason being a string of pioneering projects performed by researchers at the basic research centre bigQ at DTU Physics.

DTU researchers tighten grip on quantum computer: In a new groundbreaking work, researchers from DTU have now realized the complete platform for an optical quantum computer

Kgs. Lyngby, Denmark | Posted on August 13th, 2021

In fact, the researchers at DTU are not limiting themselves to simply developing individual components for an optical quantum computer or just a quantum simulator. They are working determinedly on developing a universal measurement-based optical quantum computer.

Can run any arbitrary algorithm

Although the type of quantum computer that the DTU researchers are developing is conceptually very different from a normal computer, there are also similarities.

There are some basic logical devices (qubits) that carry the information, and there are gates that perform operations on one or more qubits, thus implementing an algorithm.
The demonstration of a so-called universal gate set—and the implementation of a number of operations by means thereof—is precisely what constitutes the new advance in optical quantum computing.

“Our demonstration of a universal set of gates is absolutely crucial. It means that any arbitrary algorithm can be realized on our platform given the right inputs, namely optical qubits. The computer is fully programmable,” says Mikkel Vilsbøll Larsen, who has been the main driving force behind the work and who recently completed his PhD studies at DTU.

Scaling makes quantum computer practically relevant

The potential of the quantum computer is enormous, and its dramatically increased processing power relative to standard transistor-based computers will enable disruptive innovation in a wide range of areas of great importance to Denmark, such as the pharmaceutical industry, optimization of the transport sector, and development of materials for carbon capture and storage.

A crucial factor in fulfilling this potential is that the quantum computer is realized on a platform that is scalable to thousands of qubits, explains Senior Researcher Jonas S. Neergaard-Nielsen, who is one of the mainstays of the work.

“Theoretically, there’s no difference between whether a quantum computer is based on superconducting or optical qubits. But there’s a decisive practical difference. Superconducting quantum computers are limited to the number of qubits fabricated on the specific processor chip. In our system, we’re constantly creating new ones and entangling them quantum mechanically with those we are performing calculations on. This means that our platform is easily scalable.”

“In addition, we don’t need to cool everything down in large cryostats. Instead, we can do it all at room temperature in optical fibres. The fact that the system is based on optical fibres also means that it can be connected directly to a future quantum Internet, without difficult intermediaries.”

The researchers passed the scaling milestone already back in 2019 when — in an article in Science — they accounted for how, as some of the first in the world, they had produced the basic structure for a measurement-based optical quantum computer—a so-called two-dimensional cluster state with over 30,000 entangled light states.

Already looking determinedly ahead

Although they might be tempted to rest on their laurels for just a while, the team of researchers already have new goals in their sight.

Earlier this year, they developed and patented a full theoretical framework for how their technology can also embrace error correction in the long term. This is one of the great current challenges for quantum computing technology.

“It’s an important research result we’ve just published, and we’re proud of it. But our ambitions go much further than that. The long-term goal is a quantum computer that can solve relevant problems and fulfil the potential we’re all striving towards,” says Professor Ulrik L. Andersen, who is head of bigQ and has supervised the whole research programme.

"We know what it takes to place our current technology on an optical chip and introduce error correction, and we have the relevant international collaborations in place. The same applies to the corporate sector, where companies are eager to develop use cases with us.”

In other words, the researchers at DTU are ready for the next challenges and to take the next step from basic research to innovation. In fact, funding is the only thing missing.

###

Fact box

A universal quantum computer is fully programmable in the sense that it contains a set of logical operations that makes it possible to run any kind of algorithm.

A quantum simulator is a piece of hardware designed to perform a very specific calculation task. It cannot be programmed, but is hard coded to run one specific algorithm.

####

For more information, please click here

Contacts:
Louise Simonsen

Office: 452-814-3624
Expert Contact

Ulrik Lund Andersen

Office: +45 45 25 33 06
Cell: +45 29 85 60 67

Copyright © Technical University of Denmark

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Physics

Scientists discover spin polarization induced by shear flow October 1st, 2021

Switching on a superfluid: Exotic phase transitions unlock pathways to future, superfluid-based technologies September 24th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Scientists discover spin polarization induced by shear flow October 1st, 2021

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Chip Technology

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

Quantum Computing

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Fujitsu and Osaka University deepen collaborative research and development for fault-tolerant quantum computers October 1st, 2021

Two-dimensional hybrid metal halide device allows control of terahertz emissions October 1st, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Optical computing/Photonic computing

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Discoveries

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Photonics/Optics/Lasers

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project