Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Breathing new life into fuel cells

Figuring out the density and locational dynamics of iron atoms unlocks a level of efficiency in the fuel cell oxidation reaction never before realized.

CREDIT
University of Texas at Austin / Cockrell School of Engineering
Figuring out the density and locational dynamics of iron atoms unlocks a level of efficiency in the fuel cell oxidation reaction never before realized. CREDIT University of Texas at Austin / Cockrell School of Engineering

Abstract:
The demand for clean energy has never been higher, and it has created a global race to develop new technologies as alternatives to fossil fuels. Among the most tantalizing of these green energy technologies is fuel cells. They use hydrogen as fuel to cleanly produce electricity and could power everything from long-haul trucks to major industrial processes.

Breathing new life into fuel cells

Austin, TX | Posted on August 6th, 2021

However, fuel cells are held back by sluggish kinetics in a part of the core chemical reaction that limits efficiency. But, researchers from The University of Texas at Austin have discovered new dynamics that could supercharge this reaction using iron-based single-atom catalysts.

The Breakthrough: The researchers developed a new method to improve the oxygen reduction portion of the chemical reaction in fuel cells, in which O2 molecules are split to create water. They did so through a “hydrogel anchoring strategy” that creates densely packed sets of iron atoms held in place by a hydrogel polymer. Finding the right formula for spacing these atoms created interactions that allowed them to morph into catalysts for oxygen reduction.

Figuring out the density and locational dynamics of these iron atoms unlocks a level of efficiency in this reaction never before realized. The researchers demonstrated these findings in a new paper published recently in Nature Catalysis.

Why it Matters: The oxygen reduction reaction is perhaps the greatest impediment to large-scale deployment of fuel cells. The promise of fuel cells lies in the fact that they are nearly limitless in potential applications. They can use a wide range of fuels and feedstocks to provide power for systems as large as a utility power station and as small as a laptop computer.

Academic researchers around the globe are working to enhance fuel cell capabilities. That includes other engineers at UT Austin who are taking a variety of approaches to solve key problems in fuel cell development.

What the Researchers Have to Say: “It is of the utmost importance to replace fossil fuels with clean and renewable energy sources to tackle major problems plaguing our society like climate change and the pollution of the atmosphere,” said Guihua Yu, an associate professor of materials science in the Cockrell School’s Walker Department of Mechanical Engineering. “Fuel cells have been regarded as a highly efficient and sustainable technology to convert chemical to electrical energy; however, they are limited by the sluggish kinetics of the cathodic oxygen reduction reaction. We found that the distance between catalyst atoms is the most important factor in maximizing their efficiency for next-generation fuel cells.”

What’s Next: These findings can be applied to anything that includes electrocatalytic reactions. That includes other types of renewable fuels as well as ubiquitous chemical products such as alcohols, oxygenates, syngas and olefin.

The Team: In addition to Yu, authors include Zhaoyu Jin from UT’s Texas Materials Institute and the Department of Chemistry; Panpan Li and Zhiwei Fang from the Texas Materials Institute, and Dan Xiao and Yan Meng from the Department of Chemical Engineering, Sichuan University in China. The team has spent more than two years working on this project, and it was funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences; the Welch Foundation; and the Camille Dreyfus Teacher-Scholar Award.

####

For more information, please click here

Contacts:
Nat Levy

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

JOURNAL

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Automotive/Transportation

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Industrial

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Fuel Cells

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project