Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chaotic electrons heed ‘limit’ in strange metals

Abstract:
Electrons in metals try to behave like obedient motorists, but they end up more like bumper cars. They may be reckless drivers, but a new Cornell-led study confirms this chaos has a limit established by the laws of quantum mechanics.

Chaotic electrons heed ‘limit’ in strange metals

Ithaca, NY | Posted on July 30th, 2021

The team’s paper, “Linear-in Temperature Resistivity From an Isotropic Planckian Scattering Rate,” written in collaboration with researchers led by Louis Taillefer from the University of Sherbrooke in Canada, published July 28 in Nature. The paper’s lead author is Gael Grissonnanche, a postdoctoral fellow with the Kavli Institute at Cornell for Nanoscale Science.

Metals carry electric current when electrons all move together in tandem. In most metals, such as the copper and gold used for electrical wiring, the electrons try to avoid each other and flow in unison. However, in the case of certain “strange” metals, this harmony is broken and electrons dissipate energy by bouncing off each other at the fastest rate possible. The laws of quantum mechanics essentially play the role of an electron traffic cop, dictating an upper limit on how often these collisions can occur. Scientists previously observed this limit on the collision rate, also known as the “Planckian limit,” but there is no concrete theory that explains why the limit should exist, nor was it known how electrons reach this limit in strange metals. So the researchers set out to carefully measure it.

“Empirically, we’ve known that electrons can only bounce into each other so fast. But we have no idea why,” said Brad Ramshaw, the Dick & Dale Reis Johnson Assistant Professor in the College of Arts and Sciences, and the paper’s senior author. “Before, the ‘Planckian limit’ was just kind of inferred from data using very simple models. We did a very careful measurement and calculation and showed that it really is obeyed right down to the fine details. And we found that it’s isotropic, so it’s the same for electrons traveling in any direction. And that was a big surprise.”

The researchers focused their study on a copper oxide-based high-temperature superconductor known as a cuprate. Working with collaborators at the National High Magnetic Field Laboratory in Tallahassee, Florida, they introduced a sample of cuprate metal into a 45-tesla hybrid magnet – which holds the world record for creating the highest continuous magnetic field – and recorded the change in the sample’s electrical resistance while shifting the magnetic field’s angle. Ramshaw’s team then spent the better part of two years creating numerical data analysis software to extract the pertinent information.

Surprisingly, they were able to analyze their data with the same relatively simple equations used for conventional metals, and they found the cuprate metal’s electrons obeyed the Planckian limit.

“This approach that we used was supposed to be too naïve,” Grissonnanche said. “For scientists in the field, it is not obvious a priori that this should work, but it does. So with this new discovery, we have killed two birds with one stone: we have extended the validity of this simple approach to strange metals and we have accurately measured the Planckian limit. We are finally unlocking the enigma behind the intense motions of electrons in strange metals.”

“It doesn’t seem to depend on the details of the material in particular,” Taillefer said. “So it has to be something that’s almost like an overriding principle, insensitive to detail.”

Ramshaw believes that other researchers may now use this calculation framework to analyze a wide class of experimental problems and phenomena. After all, if it works in strange metals, it should work in many other areas.

And perhaps those strange metals are a little more orderly than previously thought.

“You’ve got these wildly complicated microscopic ingredients and quantum mechanics and then, out the other side, you get a very simple law, which is the scattering rate depends only on the temperature and nothing else, with a slope that’s equal to the fundamental constants of nature that we know,” he said. “And that emergence of something simple from such complicated ingredients is really beautiful and compelling.”

Such discoveries may also enable deeper understanding of the connections between quantum systems and similar phenonmena in gravitation, such as the physics of black holes – in effect, bridging the dizzyingly small world of quantum mechanics and their “dual” theories in general relativity, two branches of physics that scientists have been trying to reconcile for nearly a century.

###

Co-authors include doctoral student Yawen Fang and researchers from Université de Sherbrooke in Canada, University of Texas at Austin, the National High Magnetic Field Laboratory and University of Warwick in the United Kingdom.

The research was supported in part by the National Science Foundation, the European Research Council, the Canadian Institute for Advanced Research, the Natural Sciences and Engineering Research Council of Canada, the Canada First Research Excellence Fund and the Gordon and Betty Moore Foundation's EPiQS Initiative.

####

For more information, please click here

Contacts:
Becka Bowyer

Office: 607-220-4185

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Quantum chemistry

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project