Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene drum: Researchers develop new phonon laser design

Schematic representation of an experimental setup for receiving and recording phonon radiation.

CREDIT
Konstantin Arutyunov et al.
Schematic representation of an experimental setup for receiving and recording phonon radiation. CREDIT Konstantin Arutyunov et al.

Abstract:
Professor Konstantin Arutyunov of the HSE Tikhonov Moscow Institute of Electronics and Mathematics (MIEM HSE), together with Chinese researchers, has developed a graphene-based mechanical resonator, in which coherent emission of sound energy quanta, or phonons, has been induced. Such devices, called phonon lasers, have wide potential for application in information processing, as well as classical and quantum sensing of materials. The study is published in the journal Optics Express.

Graphene drum: Researchers develop new phonon laser design

Moscow, Russia | Posted on June 18th, 2021

Using an analogy with photons, quanta of the electromagnetic spectrum, there are also particles of sound energy, phonons. In fact, these are artificially introduced objects in physics - quasi-particles, which correspond to vibrations of the crystal lattice of matter.

Some substances, when irradiated, emit photons of the same wavelength, phase, and polarisation. This process, called stimulated emission, was predicted by Albert Einstein over a century ago and is the basis of the device we all know - the laser. The first lasers were constructed about sixty years ago, and they have become firmly established in our lives in various fields.

A similar process, involving the emission of 'identical' phonons, underlies a device called, by analogy, a phonon laser, or saser. In fact, it was predicted at the same time as lasers, but only a few experimental realisations have been developed over a long period of time, and none of them have been widely used in the industry.

Magnesium ions, semiconductors, composite systems with microcavities, electromechanical resonators, nanoparticles, and many other substances and systems have been used as active media for phonon lasers over the last decade. Unlike previous studies, the present study used graphene to create coherent acoustic excitations. Due to the unique properties of graphene, such resonators can potentially be widely used.

The graphene resonator was produced by microlithography: a photo-sensitive polymer film is deposited on a silicon substrate. Using ultraviolet light, a certain structure is 'drawn' on the substrate, which subsequently allows the formation of a repeating system of micro-cavities by means of plasma treatment. The treated substrate is covered with a layer of graphene, and this system of 'drums' behaves like a resonator, i.e. it amplifies external vibrations if they are generated with a certain frequency.

If such a 'drum' is irradiated with laser light at a specific wavelength, photons are repeatedly reflected between the silicon backing and the graphene, thereby forming optical cavities where mechanical vibrations of the appropriate frequency are produced.

'Experimentally, we have examined a nanostructure, which is a fixed membrane made of a monatomic layer of carbon, or a graphene. Vibrations of atoms, or phonons, were activated in it through exposure to external optical radiation,' says Konstantin Arutyunov. 'The research is expected to continue, as it is of considerable interest both for physics of ultra small objects and has the potential to create a new generation of quantum optomechanical sensors and transducers.'

####

For more information, please click here

Contacts:
Liudmila Mezentseva

7-926-313-2406

@HSE_eng

Copyright © National Research University Higher School of Economics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Graphene/ Graphite

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

From anti-icing coatings to protection of containers with flammable liquids: heating films with graphene nanotubes enter the market August 20th, 2021

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

Possible Futures

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Discoveries

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Announcements

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Photonics/Optics/Lasers

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project