Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Atomic-scale tailoring of graphene approaches macroscopic world

Abstract:
Graphene consists of carbon atoms arranged in a chicken-wire like pattern. This one-atom-thick material is famous for its many extraordinary properties, such as extreme strength and remarkable capability to conduct electricity. Since its discovery, researchers have looked for ways to further tailor graphene through controlled manipulation of its atomic structure. However, until now, such modifications have been only confirmed locally, because of challenges in atomic-resolution imaging of large samples and analysis of large datasets.

Atomic-scale tailoring of graphene approaches macroscopic world

Vienna, Austria | Posted on June 18th, 2021

Now a team around Jani Kotakoski at the University of Vienna together with Nion Co. has combined an experimental setup built around an atomic-resolution Nion UltraSTEM 100 microscope and new approaches to imaging and data analysis through machine learning to bring atomic-scale control of graphene towards macroscopic sample sizes. The experimental procedure is shown in Figure 1.

The experiment begins by cleaning graphene via laser irradiation, after which it is controllably modified using low energy argon ion irradiation. After transferring the sample to the microscope under vacuum, it is imaged at atomic resolution with an automatic algorithm. The recorded images are passed to a neural network which recognizes the atomic structure providing a comprehensive overview of the atomic-scale alteration of the sample.

"The key to the successful experiment was the combination of our unique experimental setup with the new automated imaging and machine learning algorithms", says Alberto Trentino, the lead author of the study. "Developing all necessary pieces was a real team effort, and now they can be easily used for follow-up experiments", he continues. Indeed, after this confirmed atomic-scale modification of graphene over a large area, the researchers are already expanding the method to employ the created structural imperfections to anchor impurity atoms to the structure. "We are excited of the prospect of creating new materials that are designed starting at the atomic level, based on this method", Jani Kotakoski, the leader of the research team concludes.

###

The research was funded by the Austrian Science Fund (FWF) and the European Research Council (ERC).

####

For more information, please click here

Contacts:
Dr. Jani Kotakoski

43-664-602-775-1444

@univienna

Copyright © University of Vienna

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original article: Alberto Trentino, Jacob Madsen, Andreas Mittelberger, Clemens Mangler, Toma Susi, Kimmo Mustonen & Jani Kotakoski: Atomic-level structural engineering of graphene on a mesoscopic scale. Nano Letters 2021, DOI: 10.1021/acs.nanolett.1c01214:

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

2 Dimensional Materials

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

Graphene/ Graphite

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Imaging

New technique allows researchers to scrape beyond the surface of nanomaterials: Using a new secondary-ion mass spectrometry technique, research are getting a fresh look at MXenes and MAX phases September 23rd, 2022

Silicon image sensor that computes: Device speeds up, simplifies image processing for autonomous vehicles and other applications August 26th, 2022

Dielectric metalens speed up the development of miniaturized imaging systems August 26th, 2022

An alternative to MINFLUX that enables nanometre resolution in a confocal microscope August 26th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Tools

Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

An alternative to MINFLUX that enables nanometre resolution in a confocal microscope August 26th, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project