Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Active platinum species: Catalytic high-temperature oxidations: Individual atom or metal cluster?

Abstract:
Highly dispersed platinum catalysts provide new possibilities for industrial processes, such as the flameless combustion of methane, propane, or carbon monoxide, which has fewer emissions and is more resource efficient and consistent than conventional combustion. In the journal Angewandte Chemie, a team of researchers reports on which platinum species are active in high-temperature oxidations and what changes they can undergo in the course of the process--important prerequisites for the optimization of catalysts.

Active platinum species: Catalytic high-temperature oxidations: Individual atom or metal cluster?

Heidelberg, Germany | Posted on June 16th, 2021

Individual metal atoms and clusters consisting of only a few metal atoms have interesting catalytic properties determined by the exact nature of the active metal species. Usually, these are highly dispersed and deposited on a support such as zeolite, which is a porous silicate framework structure that also plays a role in the characteristics of a catalyst. Even the smallest change in the active centers can drastically reduce the efficiency of a catalyst. For example, noble metals like platinum tend to become permanently deactivated through sintering under harsh conditions.

Which specific platinum species play a role in high-temperature oxidations is hard to determine, however, because a significant number of such species cannot readily be obtained without the involvement of their support in the catalysis. A team led by Pedro Serna (ExxonMobil Research and Engineering Co., New Jersey, USA), as well as Manuel Moliner and Avelino Corma (Universitat Politècnica de València, Spain) investigated the behavior of individual platinum atoms and small platinum clusters on special CHA zeolites, which are non-reducible supports that can stabilize these species very well.

Their first experiment was an investigation of splitting O(2) using two different types of isotopically pure oxygen molecules, (16)O(2) and (18)O(2). The more active the catalyst, the more mixed (16)O(18)O molecules are formed upon recombination of the dissociated atoms. It was shown that platinum clusters of under one nanometer are significantly more active than individual atoms or larger clusters. However, at moderate temperatures (200 °C) the tiny clusters fall apart over time into individual platinum atoms and the catalytic activity for splitting oxygen ends.

In contrast, the team found that for the oxidation of alkanes, such as methane, at higher temperatures, the catalytic combustion was carried out by individual platinum atoms. These are formed in situ in the oxygen stream from the initial clusters, as was shown by X-ray absorption spectroscopy and by electron microscopy. The critical step in these oxidations is not the splitting of O(2) but the breaking of C-H bonds, which is less sensitive to changes in the active-site structure.

For the oxidation of CO, the catalysis is dominated by platinum clusters. Individual platinum atoms cannot be stabilized in the CO stream, and thus, play no role. In comparison with supports made of aluminum oxide, the CHA zeolite provided higher activity and greater stability of the platinum clusters in the presence of CO.

The high stability of individual platinum atoms for methane combustion and of small platinum clusters for CO oxidation, which is retained after regeneration or treatment with hot steam, opens new possibilities for systems made of platinum and silicate zeolites as efficient and robust heterogeneous catalysts for a variety of high-temperature oxidation scenarios.

###

About the Author

Pedro Serna is a Research Associate at ExxonMobil Research and Engineering (New Jersey, USA). His main area of expertise is in the use of supported metal catalysts with molecular dimensions for hydrogenation, dehydrogenation and oxidation reactions.

####

For more information, please click here

Contacts:
Mario Mueller


Pedro Serna

Copyright © Wiley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Automotive/Transportation

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project