Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy

Researchers demonstrated a new simple QKD system over a fiber network in Padua, Italy. A map of the city center [©2021 Google] shows that the transmitter was placed at the ICT Center of UniPD while the receiver was located in the Department of Mathematics. The transmitter and the receiver were connected by 3.4 km of deployed fibers.

CREDIT
QuantumFuture Group, Università degli Studi di Padova
Researchers demonstrated a new simple QKD system over a fiber network in Padua, Italy. A map of the city center [©2021 Google] shows that the transmitter was placed at the ICT Center of UniPD while the receiver was located in the Department of Mathematics. The transmitter and the receiver were connected by 3.4 km of deployed fibers. CREDIT QuantumFuture Group, Università degli Studi di Padova

Abstract:
In a new study, researchers demonstrate an automated, easy-to-operate quantum key distribution (QKD) system using the fiber network in the city of Padua, Italy. The field test represents an important step toward implementing this highly secure quantum communication technology using the type of communication networks already in place in many regions around the world.

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy

Washington, DC | Posted on June 11th, 2021

QKD offers impenetrable encryption for data communication because it uses the quantum properties of light to generate secure random keys for encrypting and decrypting data.

"QKD can be useful in any situation where security is paramount because it offers unconditional security for the key exchange process," said Marco Avesani from Università degli Studi di Padova in Italy, co-first author of the new study with Luca Calderaro and Giulio Foletto. "It can be used to encrypt and authenticate health data sent between hospitals or money transfers among banks, for example."

In The Optical Society (OSA) journal Optics Letters, researchers led by Paolo Villoresi and Giuseppe Vallone report that their simple system is stable over time and can generate quantum-secure cryptographic keys at sustained rates over a standard telecommunications infrastructure.

"QKD systems usually require a complex stabilization system and additional dedicated synchronization hardware," said Avesani. "We developed a complete QKD system that can be directly interfaced with standard telecommunications equipment and doesn't require additional hardware for synchronization. The system fits easily into the rack enclosures commonly found in server rooms."

Designing an easy-to-use system

To produce the quantum states required by QKD, the researchers developed a new encoder for manipulating the polarization of single photons. The encoder, which the researchers call iPOGNAC, provides a fixed and stable polarization reference that doesn't require frequent recalibration. This feature is also advantageous for free-space and satellite quantum communication, where recalibrations are hard to perform.

"Because of the technology we developed, the source was ready to produce quantum states when we moved our system from the lab to the location of the field trial," said Calderaro. "We didn't have to perform the slow, and often prone-to-failure, alignment procedure required for most QKD systems."

The researchers also developed a new synchronization algorithm, which they call

Qubit4Sync, to synchronize the machines of the two QKD users. Rather than using dedicated additional hardware and an added frequency channel for synchronization, the new system uses software and the same optical signals being used for QKD. This makes the system smaller, cheaper, and easier to integrate into an existing optical network.

To test the new system, the researchers brought their two QKD terminals to two university buildings roughly 3.4 km apart in different sections of Padua. They connected the systems to two underground optical fibers that are part of the university's communication network. These fibers supported the quantum channel carrying qubits and the classical channel needed to transfer ancillary information.

A quantum-secured video call

"The field trial was successful," said Foletto. "We showed that our simple system can produce secret keys at speeds of kilobits per second and that it works outside of the laboratory with little human intervention. It was also easy and quick to install."

In a public demonstration, the researchers used their setup to enable a quantum-secured video call between the Rector of the University of Padua and the Director of the Mathematics Department. The researchers note that the system's performance is comparable to other commercial QKD systems in terms of secret key generation rate while also having fewer components and being easier to integrate into an existing fiber network.

They are working to reduce the size of the detection apparatus and to make the system more robust to noise from other light traveling in the same fiber. The effort to develop a complete and autonomous QKD system led to the creation of a spin-off company called ThinkQuantum s.r.l, which is working to commercialize this technology.

####

About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optical science with short, original, peer-reviewed communications. Optics Letters accepts papers that are noteworthy to a substantial part of the optics community. Published by The Optical Society and led by Editor-in-Chief Miguel Alonso, Institut Fresnel, École Centrale de Marseille and Aix-Marseille Université, France, University of Rochester, USA. Optics Letters is available online at OSA Publishing.

For more information, please click here

Contacts:
James Merrick

202-416-1994

Media Contact:
@opticalsociety

Copyright © The Optical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: M Avesani, L. Calderaro, G. Foletto, C. Agnesi, F. Picciariello, F. Santagiustina, A. Scriminich, A. Stanco, F. Vedovato, M. Zahidy, G. Vallone, P. Villoresi, "Resource-effective Quantum Key Distribution: a field trial in Padua city center," Opt. Lett., 46, 12, 2848-2851(2021).:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Quantum Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Quantum communication

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project