Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers build structured, multi-part nanocrystals with super light-emitting properties

Researchers combined perovskite nanocubes - tiny crystals with useful electrical or optical properties - with spherical nanoparticles to form a regular, repeating structure called a superlattice. Some of these structures displayed superfluorescence, "a burst of photons."

CREDIT
Image courtesy of Maksym Kovalenko and Ihor Cherniukh/ETH Zürich, the Swiss Federal Institute of Technology
Researchers combined perovskite nanocubes - tiny crystals with useful electrical or optical properties - with spherical nanoparticles to form a regular, repeating structure called a superlattice. Some of these structures displayed superfluorescence, "a burst of photons." CREDIT Image courtesy of Maksym Kovalenko and Ihor Cherniukh/ETH Zürich, the Swiss Federal Institute of Technology

Abstract:
Researchers have developed new types of materials that combines two or three types of nanoparticles into structures that display fundamental new properties such as superfluorescence.

Researchers build structured, multi-part nanocrystals with super light-emitting properties

Ames, IA | Posted on May 28th, 2021

"The whole goal of this research is to make new materials with new properties and/or exotic new structures," said Alex Travesset, an Iowa State University professor of physics and astronomy and an associate scientist for the U.S. Department of Energy's Ames Laboratory. "Those materials are made of very tiny materials, nanoparticles, and lead to properties not shared by more traditional materials made of atoms and molecules."

In this case, an international research team is combining perovskite nanocubes - tiny crystals with useful electrical or optical properties - with spherical nanoparticles to form a regular, repeating structure called a superlattice. The researchers successfully assembled three different superlattices, with one displaying superfluorescence, while another did not.

"This is an example of how structure determines function," Travesset said.

The researchers reported their discovery in a paper just published by the journal Nature that also made the issue's cover.

Maksym Kovalenko, a professor of chemistry and applied biosciences at ETH Zürich, the Swiss Federal Institute of Technology, is the leader of the project and the paper's corresponding author. Ihor Cherniukh, a doctoral student at ETH Zürich, is the first author.

This is the first time such nanoparticles have been combined, the researchers reported in the paper.

Travesset, whose campus website identifies him as a professor of "All things nanoparticles," said he provided the group with theoretical and computational guidance that established what structures would be possible and also made quantitative predictions.

It turned out the predictions were in agreement with the experimental results.

Travesset said the project demonstrates it's "the structure that determines the optoelectronic properties. These are properties that depend on the actual structures - on how the particles are arranged."

A four-year, $385,000 grant from the National Science Foundation supported Travesset's work on the project.

Researchers at ETH Zürich assembled the nanoparticles and researchers at IBM Research Europe measured the nanoparticles' superfluorescent properties.

Although the goal for this project was to advance fundamental science, Travesset said the basic discovery will lead to some practical uses such as ultrabright, quantum light sources.

Perovskite materials are very efficient at turning sunlight into electricity, and so they're being studied for use in solar cells. Now, with the assembly techniques discovered in this project, Travesset said different nanoparticles could be combined to produce novel materials with simultaneous complementary properties.

"We can now take the amazing properties of perovskites," Travesset said, "and combine them with nanoparticles with complementary properties and design materials that perform several functions at the same time."

The Research Team

Iowa State University, Ames Laboratory: Alejandro Travesset
ETH Zürich, the Swiss Federal Institute of Technology: Maksym Kovalenko, Ihor Cherniukh, Gabriele Rainò, Maryna Bodnarchuk
IBM Research Europe, Zürich: Thilo Stöferle, Rainer Mahrt
Paul Scherrer Institute, Switzerland: Max Burian
Graz University of Technology, Austria: Denys Naumenko, Heinz Amenitsch
Empa, the Swiss Federal Laboratories for Materials Testing and Research: Rolf Erni

####

For more information, please click here

Contacts:
Alex Travesset

515-294-7191

@IowaStateUNews

Copyright © Iowa State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the paper

Related News Press

Perovskites

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

News and information

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Govt.-Legislation/Regulation/Funding/Policy

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Possible Futures

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Discoveries

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Materials/Metamaterials

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

Quantum computing enables unprecedented materials science simulations: Multi-institutional team provides a foundation for unraveling the mysteries of magnetic materials August 6th, 2021

Announcements

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Energy

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

Cheaper hydrogen production: Efficient water and urea electrolysis with bimetallic yolk-shell nanoparticles September 10th, 2021

Perovskite solar cells: Interfacial loss mechanisms revealed August 20th, 2021

Solar/Photovoltaic

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

The National Space Society Joins the Progressive Policy Institute in Supporting Rapid Development of Space Solar Power: Orbiting Solar Power Stations Would Help to Save the Environment August 20th, 2021

Harnessing sunlight to fuel the future through covalent organic frameworks: Scientists underscore the potential of a new class of materials to convert sunlight to fuel August 13th, 2021

A universal intercalation strategy for high-stable perovskite photovoltaics: Researchers at Kanazawa University demonstrate that the use of CsI intercalation technology greatly passivate defects, subsequently improve device performance. This technology may encourage a more widesp August 6th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project