Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum steering for more precise measurements

Einstein-Podolski-Rosen correlations can be used for precision measurements. (Image: Jurik Peter, Shutterstock)
Einstein-Podolski-Rosen correlations can be used for precision measurements. (Image: Jurik Peter, Shutterstock)

Abstract:
Quantum systems consisting of several particles can be used to measure magnetic or electric fields more precisely. A young physicist at the University of Basel has now proposed a new scheme for such measurements that uses a particular kind of correlation between quantum particles.

Quantum steering for more precise measurements

Basel, Switzerland | Posted on April 23rd, 2021

In quantum information, the fictitious agents Alice and Bob are often used to illustrate complex communication tasks. In one such process, Alice can use entangled quantum particles such as photons to transmit or "teleport" a quantum state - unknown even to herself - to Bob, something that is not feasible using traditional communications.

However, it has been unclear whether the team Alice-Bob can use similar quantum states for other things besides communication. A young physicist at the University of Basel has now shown how particular types of quantum states can be used to perform measurements with higher precision than quantum physics would ordinarily allow. The results have been published in the scientific journal Nature Communications.

Quantum steering at a distance

Together with researchers in Great Britain and France, Dr. Matteo Fadel, who works at the Physics Department of the University of Basel, has thought about how high-precision measurement tasks can be tackled with the help of so-called quantum steering.

Quantum steering describes the fact that in certain quantum states of systems consisting of two particles, a measurement on the first particle allows one to make more precise predictions about possible measurement results on the second particle than quantum mechanics would allow if only the measurement on the second particle had been made. It is just as if the measurement on the first particle had "steered" the state of the second one.

This phenomenon is also known as the EPR paradox, named after Albert Einstein, Boris Podolsky and Nathan Rosen, who first described it in 1935. What is remarkable about it is that it works even if the particles are far apart because they are quantum-mechanically ?entangled? and can feel each other at a distance. This is also what allows Alice to transmit her quantum state to Bob in quantum teleportation.

"For quantum steering, the particles have to be entangled with each other in a very particular fashion," Fadel explains. "We were interested in understanding whether this could be used for making better measurements." The measurement procedure he proposes consists of Alice's performing a measurement on her particle and transmitting the result to Bob.

Thanks to quantum steering, Bob can then adjust his measurement apparatus such that the measurement error on his particle is smaller than it would have been without Alice's information. In this way, Bob can measure, for instance, magnetic or electric fields acting on his particles with high precision.

Systematic study of steering-enhanced measurements

The study of Fadel and his colleagues now makes it possible to systematically study and demonstrate the usefulness of quantum steering for metrological applications. "The idea for this arose from an experiment we already did in 2018 in the laboratory of Professor Philipp Treutlein at the University of Basel," says Fadel.

"In that experiment, we were able to measure quantum steering for the first time between two clouds containing hundreds of cold atoms each. After that, we asked ourselves whether it might be possible to do something useful with that." In his work, Fadel has now created a solid mathematical basis for realizing real-life measurement applications that use quantum steering as a resource.

"In a few simple cases, we already knew that there was a connection between the EPR paradox and precision measurements," Treutlein says. "But now we have a general theoretical framework, based on which we can also develop new strategies for quantum metrology." Researchers are already working on demonstrating Fadel's ideas experimentally. In the future, this could result in new quantum-enhanced measurement devices.

####

For more information, please click here

Contacts:
Reto Caluori

41-612-072-495

@UniBasel_en

Copyright © University of Basel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Quantum communication

Next-generation quantum communication October 3rd, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project