Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > With new optical device, engineers can fine tune the color of light

Shanhui Fan (Image credit: Rod Searcey)
Shanhui Fan (Image credit: Rod Searcey)

Abstract:
Among the first lessons any grade school science student learns is that white light is not white at all, but rather a composite of many photons, those little droplets of energy that make up light, from every color of the rainbow - red, orange, yellow, green, blue, indigo, violet.

With new optical device, engineers can fine tune the color of light

Stanford, CA | Posted on April 23rd, 2021

Now, researchers at Stanford University have developed an optical device that allows engineers to change and fine-tune the frequencies of each individual photon in a stream of light to virtually any mixture of colors they want. The result, published April 23 in Nature Communication, is a new photonic architecture that could transform fields ranging from digital communications and artificial intelligence to cutting-edge quantum computing.

"This powerful new tool puts a degree of control in the engineer's hands not previously possible," said Shanhui Fan, a professor of electrical engineering at Stanford and senior author of the paper.

The clover-leaf effect

The structure consists of a low-loss wire for light carrying a stream of photons that pass by like so many cars on a busy throughway. The photons then enter a series of rings, like the off-ramps in a highway cloverleaf. Each ring has a modulator that transforms the frequency of the passing photons - frequencies which our eyes see as color. There can be as many rings as necessary, and engineers can finely control the modulators to dial in the desired frequency transformation.

Among the applications that the researchers envision include optical neural networks for artificial intelligence that perform neural computations using light instead of electrons. Existing methods that accomplish optical neural networks do not actually change the frequencies of the photons, but simply reroute photons of a single frequency. Performing such neural computations through frequency manipulation could lead to much more compact devices, say the researchers.

"Our device is a significant departure from existing methods with a small footprint and yet offering tremendous new engineering flexibility," said Avik Dutt, a post-doctoral scholar in Fan's lab and second author of the paper.

Seeing the light

The color of a photon is determined by the frequency at which the photon resonates, which, in turn, is a factor of its wavelength. A red photon has a relatively slow frequency and a wavelength of about 650 nanometers. At the other end of the spectrum, blue light has a much faster frequency with a wavelength of about 450 nanometers.

A simple transformation might involve shifting a photon from a frequency of 500 nanometers to, say, 510 nanometers - or, as the human eye would register it, a change from cyan to green. The power of the Stanford team's architecture is that it can perform these simple transformations, but also much more sophisticated ones with fine control.

To further explain, Fan offers an example of an incoming light stream comprised of 20 percent photons in the 500-nanometer range and 80 percent at 510 nanometers. Using this new device, an engineer could fine-tune that ratio to 73 percent at 500 nanometers and 27 percent at 510 nanometers, if so desired, all while preserving the total number of photons. Or the ratio could 37 and 63 percent, for that matter. This ability to set the ratio is what makes this device new and promising. Moreover, in the quantum world, a single photon can have multiple colors. In that circumstance, the new device actually allows changing of the ratio of different colors for a single photon.

"We say this device allows for 'arbitrary' transformation but that does not mean 'random,'" said Siddharth Buddhiraju, who was a graduate student in Fan's lab during the research and is first author of the paper and who now works at Facebook Reality Labs. "Instead, we mean that we can achieve any linear transformation that the engineer requires. There is a great amount of engineering control here."

"It's very versatile. The engineer can control the frequencies and proportions very accurately and a wide variety of transformations are possible," Fan added. "It puts new power in the engineer's hands. How they will use it is up to them."

###

Additional authors include postdoctoral scholars Momchil Minkov, now at Flexcompute, and Ian A. D. Williamson, now at Google X.

This research was supported by the U.S. Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Tom Abate

650-736-2245

@stanford

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Artificial Intelligence

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project