Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > With new optical device, engineers can fine tune the color of light

Shanhui Fan (Image credit: Rod Searcey)
Shanhui Fan (Image credit: Rod Searcey)

Abstract:
Among the first lessons any grade school science student learns is that white light is not white at all, but rather a composite of many photons, those little droplets of energy that make up light, from every color of the rainbow - red, orange, yellow, green, blue, indigo, violet.

With new optical device, engineers can fine tune the color of light

Stanford, CA | Posted on April 23rd, 2021

Now, researchers at Stanford University have developed an optical device that allows engineers to change and fine-tune the frequencies of each individual photon in a stream of light to virtually any mixture of colors they want. The result, published April 23 in Nature Communication, is a new photonic architecture that could transform fields ranging from digital communications and artificial intelligence to cutting-edge quantum computing.

"This powerful new tool puts a degree of control in the engineer's hands not previously possible," said Shanhui Fan, a professor of electrical engineering at Stanford and senior author of the paper.

The clover-leaf effect

The structure consists of a low-loss wire for light carrying a stream of photons that pass by like so many cars on a busy throughway. The photons then enter a series of rings, like the off-ramps in a highway cloverleaf. Each ring has a modulator that transforms the frequency of the passing photons - frequencies which our eyes see as color. There can be as many rings as necessary, and engineers can finely control the modulators to dial in the desired frequency transformation.

Among the applications that the researchers envision include optical neural networks for artificial intelligence that perform neural computations using light instead of electrons. Existing methods that accomplish optical neural networks do not actually change the frequencies of the photons, but simply reroute photons of a single frequency. Performing such neural computations through frequency manipulation could lead to much more compact devices, say the researchers.

"Our device is a significant departure from existing methods with a small footprint and yet offering tremendous new engineering flexibility," said Avik Dutt, a post-doctoral scholar in Fan's lab and second author of the paper.

Seeing the light

The color of a photon is determined by the frequency at which the photon resonates, which, in turn, is a factor of its wavelength. A red photon has a relatively slow frequency and a wavelength of about 650 nanometers. At the other end of the spectrum, blue light has a much faster frequency with a wavelength of about 450 nanometers.

A simple transformation might involve shifting a photon from a frequency of 500 nanometers to, say, 510 nanometers - or, as the human eye would register it, a change from cyan to green. The power of the Stanford team's architecture is that it can perform these simple transformations, but also much more sophisticated ones with fine control.

To further explain, Fan offers an example of an incoming light stream comprised of 20 percent photons in the 500-nanometer range and 80 percent at 510 nanometers. Using this new device, an engineer could fine-tune that ratio to 73 percent at 500 nanometers and 27 percent at 510 nanometers, if so desired, all while preserving the total number of photons. Or the ratio could 37 and 63 percent, for that matter. This ability to set the ratio is what makes this device new and promising. Moreover, in the quantum world, a single photon can have multiple colors. In that circumstance, the new device actually allows changing of the ratio of different colors for a single photon.

"We say this device allows for 'arbitrary' transformation but that does not mean 'random,'" said Siddharth Buddhiraju, who was a graduate student in Fan's lab during the research and is first author of the paper and who now works at Facebook Reality Labs. "Instead, we mean that we can achieve any linear transformation that the engineer requires. There is a great amount of engineering control here."

"It's very versatile. The engineer can control the frequencies and proportions very accurately and a wide variety of transformations are possible," Fan added. "It puts new power in the engineer's hands. How they will use it is up to them."

###

Additional authors include postdoctoral scholars Momchil Minkov, now at Flexcompute, and Ian A. D. Williamson, now at Google X.

This research was supported by the U.S. Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Tom Abate

650-736-2245

@stanford

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Physicists watch as ultracold atoms form a crystal of quantum tornadoes: The new observations record a key crossover from classical to quantum behavior January 7th, 2022

Nanotube fibers stand strong -- but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021

Record-breaking hole mobility heralds a flexible future for electronics: Researchers from The University of Tsukuba grow a germanium thin film on a flexible polyimide substrate, resulting in a material with the highest hole mobility reported to date December 24th, 2021

Possible Futures

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Chip Technology

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Intense monocycle terahertz pulses from shifting electrons in quantum structures January 7th, 2022

Researchers detect two-dimensional kagome surface states January 7th, 2022

Mass production of revolutionary computer memory moves closer with ULTRARAM™ on silicon wafers for the first time January 7th, 2022

Optical computing/Photonic computing

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum Collaboration: Two UCSB scientists receive award to partner with Cisco’s new Quantum Research Team November 3rd, 2021

Discoveries

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Announcements

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Military

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Physicists watch as ultracold atoms form a crystal of quantum tornadoes: The new observations record a key crossover from classical to quantum behavior January 7th, 2022

Series of preclinical studies supports the Army’s pan-coronavirus vaccine development strategy December 17th, 2021

Light speed advances: UD Prof. Tingyi Gu receives DARPA Young Faculty Award December 3rd, 2021

Artificial Intelligence

The free-energy principle explains the brain January 14th, 2022

SUTD researchers develop ultra-scalable artificial synapse December 24th, 2021

AI models microprocessor performance in real-time: New algorithm predicts processor power consumption trillions of times per second while requiring little power or circuitry of its own December 10th, 2021

DeepMind simulates matter on the nanoscale with AI December 10th, 2021

Photonics/Optics/Lasers

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Super-resolved imaging of a single cold atom on a nanosecond timescale January 7th, 2022

Using magnets to toggle nanolasers leads to better photonics: Controlling nanolasers with magnets lays the groundwork for more robust optical signalling December 24th, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project