Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them

Magneto-optical microscope used for imaging spin waves in a Fabry-Pérot resonator

CREDIT
Matt Allinson, Aalto University
Magneto-optical microscope used for imaging spin waves in a Fabry-Pérot resonator CREDIT Matt Allinson, Aalto University

Abstract:
Researchers at Aalto University have developed a new device for spintronics. The results have been published in the journal Nature Communications, and mark a step towards the goal of using spintronics to make computer chips and devices for data processing and communication technology that are small and powerful.

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them

Aalto, Finland | Posted on April 16th, 2021

Traditional electronics uses electrical charge to carry out computations that power most of our day-to-day technology. However, engineers are unable to make electronics do calculations faster, as moving charge creates heat, and we're at the limits of how small and fast chips can get before overheating. Because electronics can't be made smaller, there are concerns that computers won't be able to get more powerful and cheaper at the same rate they have been for the past 7 decades. This is where spintronics comes in.

"Spin" is a property of particles like electrons in the same way that "charge" is. Researchers are excited about using spin to carry out computations because it avoids the heating issues of current computer chips. 'If you use spin waves, it's transfer of spin, you don't move charge, so you don't create heating,' says Professor Sebastiaan van Dijken, who leads the group that wrote the paper.

Nanoscale magnetic materials

The device the team made is a Fabry-Pérot resonator, a well known tool in optics for creating beams of light with a tightly controlled wavelength. The spin-wave version made by the researchers in this work allows them to control and filter waves of spin in devices that are only a few hundreds of nanometres across.

The devices were made by sandwiching very thin layers of materials with exotic magnetic properties on top of eachother. This created a device where the spin waves in the material would be trapped and cancelled out if they weren't of the desired frequency. 'The concept is new, but easy to implement,' explains Dr Huajun Qin, the first author of the paper, 'the trick is to make good quality materials, which we have here at Aalto. The fact that it is not challenging to make these devices means we have lots of opportunities for new exciting work.'

Wireless data processing and analogue computing

The issues with speeding up electronics goes beyond overheating, they also cause complications in wireless transmission, as wireless signals need to be converted from their higher frequencies down to frequencies that electronic circuits can manage. This conversion slows the process down, and requires energy. Spin wave chips are able to operate at the microwave frequencies used in mobile phone and wifi signals, which means that there is a lot of potential for them to be used in even faster and more reliable wireless communication technologies in the future.

Furthermore, spin waves can be used to do computing in ways that are faster that electronic computing at specific tasks 'Electronic computing uses "Boolean" or Binary logic to do calculations,' explains Professor van Dijken, 'with spin waves, the information is carried in the amplitude of the wave, which allows for more analogue style computing. This means that it could be very useful for specific tasks like image processing, or pattern recognition. The great thing about our system is that the size structure of it means that it should be easy to integrate into existing technology'

Now that the team has the resonator to filter and control the spin waves, the next steps are to make a complete circuit for them. "To build a magnetic circuit, we need to be able to guide the spin waves towards functional components, like the way conducting electrical channels do on electronic microchips. We are looking at making similar structures to steer spin waves" explains Dr Qin.

####

For more information, please click here

Contacts:
Prof. Sebastiaan van Dijken
E-mail:
Phone: +358-50-3160969
Website: http://physics.aalto.fi/groups/nanospin/
Dr Huajun Qin
E-mail:

@aaltouniversity

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More Information

Related News Press

Physics

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

News and information

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Possible Futures

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Spintronics

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111) April 2nd, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Quantum Computing

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Discoveries

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Announcements

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project