Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Qubits comprised of holes could be the trick to build faster, larger quantum computers: Electron holes could be the solution to operational speed/coherence trade-off

A/Prof Dimi Culcer (UNSW) led the theoretical study

CREDIT
FLEET
A/Prof Dimi Culcer (UNSW) led the theoretical study CREDIT FLEET

Abstract:
A new study indicates holes the solution to operational speed/coherence trade-off, potential scaling up of qubits to a mini-quantum computer.

Qubits comprised of holes could be the trick to build faster, larger quantum computers: Electron holes could be the solution to operational speed/coherence trade-off

Australia | Posted on April 2nd, 2021

Quantum computers are predicted to be much more powerful and functional than today's 'classical' computers.

One way to make a quantum bit is to use the 'spin' of an electron, which can point either up or down. To make quantum computers as fast and power-efficient as possible we would like to operate them using only electric fields, which are applied using ordinary electrodes.

Although spin does not ordinarily 'talk' to electric fields, in some materials spins can interact with electric fields indirectly, and these are some of the hottest materials currently studied in quantum computing.

The interaction that enables spins to talk to electric fields is called the spin-orbit interaction, and is traced all the way back to Einstein's theory of relativity.

The fear of quantum-computing researchers has been that when this interaction is strong, any gain in operation speed would be offset by a loss in coherence (essentially, how long we can preserve quantum information).

"If electrons start to talk to the electric fields we apply in the lab, this means they are also exposed to unwanted, fluctuating electric fields that exist in any material (generically called `noise') and those electrons' fragile quantum information would be destroyed," says A/Prof Dimi Culcer (UNSW/FLEET), who led the theoretical roadmap study.

"But our study has shown this fear is not justified."

"Our theoretical studies show that a solution is reached by using holes, which can be thought of as the absence of an electron, behaving like positively-charged electrons."

In this way, a quantum bit can be made robust against charge fluctuations stemming from the solid background.

Moreover, the 'sweet spot' at which the qubit is least sensitive to such noise is also the point at which it can be operated the fastest.

"Our study predicts such a point exists in every quantum bit made of holes and provides a set of guidelines for experimentalists to reach these points in their labs," says Dimi.

Reaching these points will facilitate experimental efforts to preserve quantum information for as long as possible. This will also provide strategies for 'scaling up' quantum bits - ie, building an 'array' of bits that would work as a mini-quantum computer.

"This theoretical prediction is of key importance for scaling up quantum processors and first experiments have already been carried out," says Prof Sven Rogge of the Centre for Quantum Computing and Communication Technology (CQC2T)."

"Our recent experiments on hole qubits using acceptors in silicon already demonstrated longer coherence times than we expected," says A/Prof Joe Salfi of the University of British Columbia. "It is encouraging to see that these observations rest on a firm theoretical footing. The prospects for hole qubits are bright indeed."

####

For more information, please click here

Contacts:
Errol Hunt

042-313-9210

@FLEETcentre

Copyright © ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits was published in Nature partner journal npj Quantum Information in April 2021. (DOI: 10.1038/s41534-021-00386-2)

Related News Press

News and information

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Govt.-Legislation/Regulation/Funding/Policy

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Possible Futures

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Chip Technology

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Quantum Computing

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Discoveries

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Announcements

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project