Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Qubits comprised of holes could be the trick to build faster, larger quantum computers: Electron holes could be the solution to operational speed/coherence trade-off

A/Prof Dimi Culcer (UNSW) led the theoretical study

CREDIT
FLEET
A/Prof Dimi Culcer (UNSW) led the theoretical study CREDIT FLEET

Abstract:
A new study indicates holes the solution to operational speed/coherence trade-off, potential scaling up of qubits to a mini-quantum computer.

Qubits comprised of holes could be the trick to build faster, larger quantum computers: Electron holes could be the solution to operational speed/coherence trade-off

Australia | Posted on April 2nd, 2021

Quantum computers are predicted to be much more powerful and functional than today's 'classical' computers.

One way to make a quantum bit is to use the 'spin' of an electron, which can point either up or down. To make quantum computers as fast and power-efficient as possible we would like to operate them using only electric fields, which are applied using ordinary electrodes.

Although spin does not ordinarily 'talk' to electric fields, in some materials spins can interact with electric fields indirectly, and these are some of the hottest materials currently studied in quantum computing.

The interaction that enables spins to talk to electric fields is called the spin-orbit interaction, and is traced all the way back to Einstein's theory of relativity.

The fear of quantum-computing researchers has been that when this interaction is strong, any gain in operation speed would be offset by a loss in coherence (essentially, how long we can preserve quantum information).

"If electrons start to talk to the electric fields we apply in the lab, this means they are also exposed to unwanted, fluctuating electric fields that exist in any material (generically called `noise') and those electrons' fragile quantum information would be destroyed," says A/Prof Dimi Culcer (UNSW/FLEET), who led the theoretical roadmap study.

"But our study has shown this fear is not justified."

"Our theoretical studies show that a solution is reached by using holes, which can be thought of as the absence of an electron, behaving like positively-charged electrons."

In this way, a quantum bit can be made robust against charge fluctuations stemming from the solid background.

Moreover, the 'sweet spot' at which the qubit is least sensitive to such noise is also the point at which it can be operated the fastest.

"Our study predicts such a point exists in every quantum bit made of holes and provides a set of guidelines for experimentalists to reach these points in their labs," says Dimi.

Reaching these points will facilitate experimental efforts to preserve quantum information for as long as possible. This will also provide strategies for 'scaling up' quantum bits - ie, building an 'array' of bits that would work as a mini-quantum computer.

"This theoretical prediction is of key importance for scaling up quantum processors and first experiments have already been carried out," says Prof Sven Rogge of the Centre for Quantum Computing and Communication Technology (CQC2T)."

"Our recent experiments on hole qubits using acceptors in silicon already demonstrated longer coherence times than we expected," says A/Prof Joe Salfi of the University of British Columbia. "It is encouraging to see that these observations rest on a firm theoretical footing. The prospects for hole qubits are bright indeed."

####

For more information, please click here

Contacts:
Errol Hunt

042-313-9210

@FLEETcentre

Copyright © ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits was published in Nature partner journal npj Quantum Information in April 2021. (DOI: 10.1038/s41534-021-00386-2)

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Quantum Computing

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project