Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute

Schematic diagram of the MoS2 transistor in an ESR sample tube.

CREDIT
University of Tsukuba
Schematic diagram of the MoS2 transistor in an ESR sample tube. CREDIT University of Tsukuba

Abstract:
Scientists from the University of Tsukuba and a scientist from the Institute of High Pressure Physics detected and mapped the electronic spins moving in a working transistor made of molybdenum disulfide. This research may lead to much faster computers that take advantage of the natural magnetism of electrons, as opposed to just their charge.

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute

Tsukuba, Japan and Warsaw, Poland | Posted on March 5th, 2021

Spintronics is a new area of condensed matter physics that attempts to use the intrinsic magnetic moment of electrons, called "spins," to perform calculations. This would be a major advance over all existing electronics that rely solely on the electron charge. However, it is difficult to detect these spins, and there are many unknowns regarding materials that can support the transport of spin-polarized electrons.

Now, an international research team led by the Division of Materials Science at the University of Tsukuba has successfully used electron spin resonance (ESR) to monitor the number and location of unpaired spins coursing through a molybdenum disulfide transistor. ESR uses the same physical principle as the MRI machines that create medical images. The spins are subject to a very strong magnetic field, which creates an energy difference between electrons with spins aligned and anti-aligned with the field. The absorbance of photons that match this energy gap can be measured to determine the presence of unpaired electron spins.

The experiment required the sample to be cooled to just four degrees above absolute zero, and the transistor to be in operation while the spins are being measured. "The ESR signals were measured simultaneously with the drain and gate currents," corresponding author Professor Kazuhiro Marumoto says. "Theoretical calculations further identified the origins of the spins," coauthor Professor Ma?gorzata Wierzbowska says. Molybdenum disulfide was used because its atoms naturally form a nearly flat two-dimensional structure. The molybdenum atoms form a plane with a layer of sulfide ions above and below.

The team found that charging the system with the additional electrons in a process called n-type doping was important for creating the spins. "In contrast with previous work on other 2D materials, the n-type doping allowed us to achieve better control of the electronic spins," Professors Marumoto and Wierzbowska explain. The scientists believe that molybdenum disulfide will prove to be an important testbed for spintronic devices as the technology advances towards future consumer products.

####

Contacts:
Naoko Yamashina

81-298-532-066

Copyright © University of Tsukuba

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The work is published in Communications Materials as "Spin-states in MoS2 thin-film transistors distinguished by operando electron spin resonance"

Related News Press

News and information

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

2 Dimensional Materials

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Possible Futures

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Spintronics

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111) April 2nd, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Discoveries

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Announcements

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project