Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk

The Rice University computer science lab of Todd Treangen challenged -- and beat -- deep learning in a test to see if a new bioinformatics approach effectively tracks the lab of origin of a synthetic genetic sequence.

CREDIT
Tommy LaVergne/Rice University
The Rice University computer science lab of Todd Treangen challenged -- and beat -- deep learning in a test to see if a new bioinformatics approach effectively tracks the lab of origin of a synthetic genetic sequence. CREDIT Tommy LaVergne/Rice University

Abstract:
Tracking the origin of synthetic genetic code has never been simple, but it can be done through bioinformatic or, increasingly, deep learning computational approaches.

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk

Houston, TX | Posted on February 26th, 2021

Though the latter gets the lion's share of attention, new research by computer scientist Todd Treangen of Rice University's Brown School of Engineering is focused on whether sequence alignment and pan-genome-based methods can outperform recent deep learning approaches in this area.

"This is, in a sense, against the grain given that deep learning approaches have recently outperformed traditional approaches, such as BLAST," he said. "My goal with this study is to start a conversation about how to combine the expertise of both domains to achieve further improvements for this important computational challenge."

Treangen, who specializes in developing computational solutions for biosecurity and microbial forensics applications, and his team at Rice have introduced PlasmidHawk, a bioinformatics approach that analyzes DNA sequences to help identify the source of engineered plasmids of interest.

"We show that a sequence alignment-based approach can outperform a convolutional neural network (CNN) deep learning method for the specific task of lab-of-origin prediction," he said.

The researchers led by Treangen and lead author Qi Wang, a Rice graduate student, reported their results in an open-access paper in Nature Communications.

The open-source software is available here: https://gitlab.com/treangenlab/plasmidhawk.

The program may be useful not only for tracking potentially harmful engineered sequences but also for protecting intellectual property.

"The goal is either to help protect intellectual property rights of the contributors of the sequences or help trace the origin of a synthetic sequence if something bad does happen," Treangen said.

Treangen noted a recent high-profile paper describing a recurrent neural network (RNN) deep learning technique to trace the originating lab of a sequence. That method achieved 70% accuracy in predicting the single lab of origin. "Despite this important advance over the previous deep learning approach, PlasmidHawk offers improved performance over both methods," he said.

The Rice program directly aligns unknown strings of code from genome data sets and matches them to pan-genomic regions that are common or unique to synthetic biology research labs

"To predict the lab-of-origin, PlasmidHawk scores each lab based on matching regions between an unclassified sequence and the plasmid pan-genome, and then assigns the unknown sequence to a lab with the minimum score," Wang said.

In the new study, using the same dataset as one of the deep learning experiments, the researchers reported the successful prediction of "unknown sequences' depositing labs" 76% of the time. They found that 85% of the time the correct lab was in the top 10 candidates.

Unlike the deep learning approaches, they said PlasmidHawk requires reduced pre-processing of data and does not need retraining when adding new sequences to an existing project. It also differs by offering a detailed explanation for its lab-of-origin predictions in contrast to the previous deep learning approaches.

"The goal is to fill your computational toolbox with as many tools as possible," said co-author Ryan Leo Elworth, a postdoctoral researcher at Rice. "Ultimately, I believe the best results will combine machine learning, more traditional computational techniques and a deep understanding of the specific biological problem you are tackling."

###

Rice graduate students Bryce Kille and Tian Rui Liu are co-authors of the paper. Treangen is an assistant professor of computer science.

The research was supported by the National Institutes of Health via the National Institute for Neurological Disorders and Stroke, the Office of the Director of National Intelligence and the Army Research Office. Addgene provided access to the DNA sequences of the deposited plasmids.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

For more information, please click here

Contacts:
Mike Williams

713-348-6728

@RiceUNews

Jeff Falk
713-348-6775

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Synthetic Biology

Synthetic biology reinvents development:The research team have used synthetic biology to develop a new type of genetic design that can reproduce some of the key processes that enable creating structures in natural systems, from termite nests to the development of embryos February 8th, 2021

Machine learning takes on synthetic biology: algorithms can bioengineer cells for you: Berkeley Lab scientists develop a tool that could drastically speed up the ability to design new biological systems September 25th, 2020

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Scientists discover spin polarization induced by shear flow October 1st, 2021

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Discoveries

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Military

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system September 3rd, 2021

NIST’s quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

UVA Engineering researchers join quest to demonstrate photonic systems-on-chip: Future applications include faster, more efficient data centers and next-generation millimeter-wave wireless communication July 30th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project