Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses

Fused silica wafer with thickness of 350 um with high-quality glass vias of diameters between 0.25 mm and 6 mm fabricated by selective laser etching. From 10.1117/1.OE.60.2.025105

CREDIT
Daniel Flamm et al.
Fused silica wafer with thickness of 350 um with high-quality glass vias of diameters between 0.25 mm and 6 mm fabricated by selective laser etching. From 10.1117/1.OE.60.2.025105 CREDIT Daniel Flamm et al.

Abstract:
If light is strongly concentrated in time and space, resulting in extreme photon densities, it can enable interaction with all conceivable materials. By using these ultrashort laser foci, even transparent materials can be modified, even though they ordinarily would not interact. Short, focused laser pulses can overcome this transparency and allow energy to be deposited completely contact-free. The exact response of the material to the radiation can be very diverse, ranging from marginal refractive index changes to destructive microscale explosions that evacuate entire areas.

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses

Bellingham, WA | Posted on February 26th, 2021

Using the laser pulses for optical machining allows for equally diverse material modification, such as separating or joining using the same laser system. Due to the extremely short exposure time and low degree of thermal diffusion, neighboring areas remain completely unaffected, enabling true micron-scale material processing.

In "Structured light for ultrafast laser micro- and nanoprocessing" by Daniel Flamm et al., various concepts are presented for manipulating the spatial distribution of laser light at the focus in such a way that particularly efficient and, thus, industrially suitable processing strategies can be applied. For example, customized nondiffracting beams, generated by holographic axicons, can be used to modify glass sheets up to millimeter scales using single-passes and feed rates of up to a meter per second. The application of this concept to curved substrates and the development of a laser-based glass tube cutting is a groundbreaking advance. This capability has long been needed by the medical industry for the fabrication of glass items such as syringes, vials and ampoules. The machined surfaces produce excellent edge quality and are free from micro debris, to meet the demands of the consumer and medical industry.

This paper also demonstrates the potential of a newly introduced 3D-beam-splitter concept. Here, 13 identical copies of the original focus are distributed across the three-dimensional working volume using a single focusing objective, serving to increase the effective volume of a weld seam. The material's response to the pulse is directly measured using transverse pump-probe microscopy confirming a successful energy deposition with 13 individual absorption zones. The conducted experiment represents a prime example of three-dimensional parallel processing based on structured light concepts and demonstrates increased throughput scaling by exploiting the performance of high-power, ultrashort pulsed laser systems.

The broad accessibility of liquid crystal displays and their application to beam shaping using holography has also led the materials processing community to adopt structured light concepts. However, these approaches have not yet been translated into industrial processing, mainly because such displays cannot handle high optical powers and energies as well as the high programming effort required to construct digital holograms.

This paper was able to report significant progress on this front. With the presented double illumination concept, the liquid crystal display modulates both amplitude and phase of the illuminating optical field. By applying digital amplitude masks, arbitrary intensity profiles can be generated, offering benefits for formation of high spatial frequency, fine metal masks. The adapted flat-top intensity profiles depicted in the manuscript are generated without using complex Fourier coding strategies, making the concept a promising candidate for future digital optical processing heads.

####

For more information, please click here

Contacts:
Daneet Steffens

360-685-5478

@SPIEtweets

Copyright © SPIE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the original research article by Daniel Flamm et al., "Structured light for ultrafast laser micro- and nanoprocessing," Opt. Eng. 60(2), 025105 (2021), doi 10.1117/1.OE.60.2.025105

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project