Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CEA-Leti & Dolphin Design Report FD-SOI Breakthrough that Boosts Operating Frequency by 450% and Reduces Power Consumption by 30%: Joint Paper Presented at ISSCC 2021 Shows How New Adaptive Back-Biasing Technique Overcomes Integration Limits in Chip Design Flows

Abstract:
CEA-Leti and Dolphin Design have developed an adaptive back-biasing (ABB) architecture for FD-SOI chips that can be seamlessly integrated in the digital design flow with industrial-grade qualification, overcoming integration drawbacks of existing ABB techniques.

CEA-Leti & Dolphin Design Report FD-SOI Breakthrough that Boosts Operating Frequency by 450% and Reduces Power Consumption by 30%: Joint Paper Presented at ISSCC 2021 Shows How New Adaptive Back-Biasing Technique Overcomes Integration Limits in Chip Design Flows

Grenoble, France | Posted on February 23rd, 2021

Fully Depleted Silicon on Insulator (FD-SOI) is a technology that allows the biasing of the transistor’s body that acts as a back gate. Unlike conventional bulk technology, FD-SOI enables a wide voltage range of the body bias. This permits compensating for process, voltage, and temperature (PVT) variations by controlling the threshold voltage. For example, in switch operations, when the switch is on, the body bias is changed to reduce the on-resistance by reducing threshold voltage and allowing more current to pass. That accelerates the circuit. In the off state, the body bias is changed to raise the off-resistance by increasing the threshold voltage, consequently reducing the leakage current. This shows that FD-SOI technology can be used either to accelerate the design or reduce the leakage power.



Presented in a paper at ISSCC 2021, the new ABB technique also allows the application design to maintain a targeted operating frequency over a wide range of operating conditions such as temperature, manufacturing variability and supply voltage. The architecture enables reducing energy consumption of processors in 22nm FD-SOI technology by up to 30 percent and increasing the operating frequency up to 450 percent compared to a technique in which body biased technique is not used. It also improves the manufacturing yield.



“The ABB development is a breakthrough for FD-SOI technology because it shows the first-ever results depicting the enhancement in the circuit performance after using ABB, and it will help increase performances and yields in FD-SOI designs,” said Gaël Pillonnet, a CEA-Leti scientist and an author of the paper, “A 0.021 mm˛ PVT-Aware Digital-Flow-Compatible Adaptive Back-Biasing Regulator with Scalable Drivers Achieving 450% Frequency Boosting and 30% Power Reduction in 22nm FD-SOI Technology.”



The ABB is being commercialized by Dolphin Design, a leading French company in modular and energy-efficient IPs, platforms and systems on chips (SoC). It is based on CEA-Leti’s proof of concept that was improved and industrialized by Dolphin Design, underscoring the institute’s fruitful collaborations with its industrial partners and its commitment to transferring innovative designs to industry.



“The performances of our ABB IP are state of the art and show the compensation of the variations across process-voltage-temperature (PVT) conditions on a representative number of samples, enabling the usage of this solution in industrial products,” said Andrea Bonzo, IP program manager at Dolphin Design. “Previous efforts in this technique have reported only limited numbers of chips that perform as intended. With our technique, a large number of chips are shown to work properly. ABB is versatile and can be used to drive a large digital area without any limitation for any FD-SOI technology.”



According to the paper, “the well-known adaptive back-biasing (ABB) technique has already shown its capability to reduce power consumption or/and maintain operating frequency by compensating VTH variability according to process corners and temperature. However, previously published ABB architectures provide a limited overview on how to integrate the ABB seamlessly in the digital design flow with industrial-grade qualification. We propose a reusable ABB-IP for any biased digital load, from 0.4-100 mm˛, with low-area and power overhead, e.g. 1.2% @ 2 mm˛ and 0.4% @ 10 mm˛, respectively.”



With this new architecture, the ABB area is relatively small compared to the application design, and in both area and power it allows the application design to maintain its targeted speed (frequency) with a relatively low overhead.

####

About CEA Leti
Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 3,100 patents, 10,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 65 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.



Technological expertise

CEA has a key role in transferring scientific knowledge and innovation from research to industry. This high-level technological research is carried out in particular in electronic and integrated systems, from microscale to nanoscale. It has a wide range of industrial applications in the fields of transport, health, safety and telecommunications, contributing to the creation of high-quality and competitive products.



For more information: www.cea.fr/english



About Dolphin Design

Headquartered in France, Dolphin Design, previously known as Dolphin Integration, is a semiconductor company employing 160 people, including 140 highly qualified engineers.



They provide differentiating platform solutions built on state-of-the-art IPs and architectures, customized by unique system level utilities to deliver fast and secure ASICs, either designed by or for their clients. These platforms are available for various technological processes and optimized for Energy Efficient SoC Design.



Alongside their clients, now exceeding 500 companies, they focus on human, inventive and long-term collaboration to enable them to bring products, powered by innovative and accessible integrated circuits that minimize environmental impact, to the hands of billions of people every day. In consumer markets including IoT, AI and 5G, and in high reliability markets, they unleash SoC designer creativity to deliver differentiation.



For more information: www.dolphin-design.fr

For more information, please click here

Contacts:

Press Contact CEA-Leti

Agency

+33 6 74 93 23 47





Press Contact Dolphin Design

Aurélie Descombes

+33 4 80 42 07 20

Copyright © CEA Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

‘Anti-rust’ coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

Chip Technology

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Announcements

‘Anti-rust’ coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

‘Anti-rust’ coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Alliances/Trade associations/Partnerships/Distributorships

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

The National Space Society Joins the Progressive Policy Institute in Supporting Rapid Development of Space Solar Power: Orbiting Solar Power Stations Would Help to Save the Environment August 20th, 2021

Verizon and Zurich Instruments join Q-NEXT national quantum science center August 6th, 2021

Research partnerships

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

New molecular device has unprecedented reconfigurability reminiscent of brain plasticity: Device can be reconfigured multiple times simply by changing applied voltage September 3rd, 2021

Rice physicists find 'magnon' origins in 2D magnet: Topological feature could prove useful for encoding information in electron spins September 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project