Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries

A team from the Max Planck Institute in Heidelberg excites nuclei of iron atoms with a flash of X-ray light and then sends a second such flash onto the sample with different delays and detuning. Then, over a period of about 200 nanoseconds, the researchers measure the intensity of the light with which the nuclei release the absorbed energy (light yellow: high intensity; violet: low intensity). They can choose the delay so that the second flash reduces the excitation and the nuclei release their energy quickly and with high intensity (a). After only 50 nanoseconds, the emission has decreased significantly. In contrast, they still emit a relatively large amount of light after more than 100 nanoseconds if the second pulse amplifies the excitation from the first (b).

CREDIT
MPI for Nuclear Physics
A team from the Max Planck Institute in Heidelberg excites nuclei of iron atoms with a flash of X-ray light and then sends a second such flash onto the sample with different delays and detuning. Then, over a period of about 200 nanoseconds, the researchers measure the intensity of the light with which the nuclei release the absorbed energy (light yellow: high intensity; violet: low intensity). They can choose the delay so that the second flash reduces the excitation and the nuclei release their energy quickly and with high intensity (a). After only 50 nanoseconds, the emission has decreased significantly. In contrast, they still emit a relatively large amount of light after more than 100 nanoseconds if the second pulse amplifies the excitation from the first (b). CREDIT MPI for Nuclear Physics

Abstract:
From atomic clocks to secure communication to quantum computers: these developments are based on the increasingly better control of the quantum behaviour of electrons in atomic shells with the help of laser light. Now, for the first time, physicists at the Max Planck Institute for Nuclear Physics in Heidelberg have succeeded in precisely controlling quantum jumps in atomic nuclei using X-ray light. Compared with electron systems, nuclear quantum jumps are extreme - with energies up to millions of times higher and incredibly short zeptosecond processes. A zeptosecond is one trillionth of a billionth of a second. The rewards include profound insight into the quantum world, ultra-precise nuclear clocks, and nuclear batteries with enormous storage capacity. The experiment required a sophisticated X-ray flash facility developed by a Heidelberg group led by Jörg Evers as part of an international collaboration.

Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries

Heidelberg, Germany | Posted on February 19th, 2021

One of the great successes of modern physics is the increasingly precise control of dynamic quantum processes. It enables a deeper understanding of the quantum world with all its oddities and is also a driving force of new quantum technologies. But from the perspective of the atoms, "coherent control" has so far remained superficial: it is the quantum jump of the electrons in the outer shell of the atoms that has become increasingly controllable by lasers. But as Christoph Keitel explains, the atomic nuclei themselves are also quantum systems in which the nuclear building blocks can make quantum jumps between different quantum states.

Energy-rich quantum jumps for nuclear batteries

"In addition to this analogy to electron shells, there are huge differences", explains the Director at the Max Planck Institute for Nuclear Physics in Heidelberg: "They've got us so excited!" Quantum jumps between different quantum states are actually jumps on a kind of energy ladder. "And the energies of these quantum jumps are often six orders of magnitude greater than in the electron shell", says Keitel. A single quantum jump made by a nuclear component can thus pump up to a million times more energy into it - or get it out again. This has given rise to the idea of nuclear batteries with an unprecedented storage capacity.

Such technical applications are still visions of the future. At the moment, research entails addressing and controlling these quantum jumps in a targeted manner. This requires precisely controlled, high-energy X-ray light. The Heidelberg team has been working on such an experimental technique for over 10 years. It has now been used for the first time.

Accurate frequencies enable ultra-precise atomic clocks

The quantum states of atomic nuclei offer another important advantage over electron states. Compared with the electronic quantum jumps, they are much more sharply defined. Because this translates directly into more accurate frequencies according to the laws of physics, they can, in principle, be used for extremely precise measurements. For example, this could enable the development of ultra-precise nuclear clocks that would make today's atomic clocks look like antiquated pendulum clocks. In addition to technical applications of such clocks (e.g. in navigation), they could be used to examine the fundamentals of today's physics much more precisely. This includes the fundamental question of whether the constants of nature really are constant. However, such precision techniques require the control of quantum transitions in the nuclei.

Coordinated light flashes enhance or reduce the excitation

The principle of the Heidelberg experimental technique sounds quite simple at first. It uses pulses (i.e. flashes) of high-energy X-ray light, which are currently provided by the European Synchrotron Radiation Source ESRF in Grenoble. The experiment splits these X-ray pulses in a first sample in such a way that a second pulse follows behind the rest of the first pulse with a time delay. One after the other, both encounter a second sample, the actual object of investigation.

The first pulse is very brief and contains a broad mix of frequencies. Like a shotgun blast, it stimulates a quantum jump in the nuclei; in the first experiment, this was a special quantum state in nuclei of iron atoms. The second pulse is much longer and has an energy that is precisely tuned to the quantum jump. In this way, it can specifically manipulate the quantum dynamics triggered by Pulse 1. The time span between the two pulses can be adjusted. This allows the team to adjust whether the second pulse is more constructive or destructive for the quantum state.

The Heidelberg physicists compare this control mechanism to a swing. With the first pulse, you push it. Depending on the phase of its oscillation in which you give it a second push, it oscillates even stronger or is slowed down.

Pulse control accurate to a few zeptoseconds

But what sounds simple is a technical challenge that required years of research. A controlled change in the quantum dynamics of an atomic nucleus requires that the delay of the second pulse is stable on the unimaginably short time scale of a few zeptoseconds. Because only then do the two pulses work together in a controlling way.

A zeptosecond is one trillionth of a billionth of a second - or a decimal point followed by 20 zeroes and a 1. In one zeptosecond, light does not even manage to pass through one per cent of a medium-sized atom. How can you imagine this in relation to our world? "If you imagine that an atom were as big as the Earth, that would be about 50 km, says Jörg Evers, who initiated the project.

The sample is shifted by 45 trillionths of a metre

The second X-ray pulse is delayed by a tiny displacement of the first sample, also containing iron nuclei with the appropriate quantum transition. "The nuclei selectively store energy from the first X-ray pulse for a short period of time during which the sample is rapidly shifted by about half a wavelength of X-ray light", explains Thomas Pfeifer, Director at the Max Planck Institute for Nuclear Physics in Heidelberg. This corresponds to about 45 trillionths of a metre. After this tiny movement, the sample emits the second pulse.

The physicists compare their experiment to two tuning forks that are at different distances from a firecracker (Figure 2). The bang first strikes the closer tuning fork, making it vibrate, and then moves on to the second tuning fork. In the meantime, the first tuning fork, now excited, emits sound waves itself, which arrive with a delay at the second fork. Depending on the delay time, this sound either amplifies or dampens the vibrations of the second fork - just like the second push on the oscillating swing, as well as for the case of the excited nuclei.

With this experiment, Jörg Evers, Christoph Keitel, and Thomas Pfeifer and their team from the Max Planck Institute for Nuclear Physics in cooperation with researchers from DESY in Hamburg and the Helmholtz Institute/Friedrich Schiller University in Jena succeeded for the first time in demonstrating coherent control of nuclear excitations. In addition to synchrotron facilities such as those at the ESRF, free-electron lasers (FELs) such as the European XFEL at DESY have recently provided powerful sources of X-ray radiation - even in laser-like quality. This opens up a dynamic future for the emerging field of nuclear quantum optics.

####

For more information, please click here

Contacts:
Prof. Dr. Jörg Evers

49-622-151-6177

@maxplanckpress

Copyright © Max Planck - Gesellschaft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication

Related News Press

News and information

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Quantum Physics

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Physics

D-Wave demonstrates performance advantage in quantum simulation of exotic magnetism: Fully-programmable annealing quantum computer demonstrates 3 million times speed-up over classical CPU in a practical application February 19th, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Transition metal 'cocktail' helps make brand new superconductors: Concept of high entropy alloys provides a discovery platform for new superconductors January 8th, 2021

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

Quantum communication

Researchers realize efficient generation of high-dimensional quantum teleportation January 14th, 2021

A new candidate material for quantum spin liquids November 12th, 2020

Possible Futures

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Quantum Computing

CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Quantum computing: when ignorance is wanted February 19th, 2021

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors February 19th, 2021

Discoveries

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Announcements

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Light in concert with force reveals how materials become harder when illuminated: When indented by a probe in darkness, wafers of some semiconductors are putty-like. When illuminated by light whose wavelength matches the band gap, they become hard, as electrons and holes freed by March 5th, 2021

Taking 2D materials for a spin: Scientists at the University of Tsukuba and the Institute of High Pressure Physics fabricate a novel molybdenum disulfide transistor and create an image of the spins of the electrons passing through which may open the way for new spintronic compute March 5th, 2021

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Built to last: New copolymer binder to extend the life of lithium ion batteries: Scientists develop a novel binder material that protects the graphite anode of Li-ion batteries from degradation even after 1700 cycles March 5th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab's Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

From heat to spin to electricity: Understanding spin transport in thermoelectric devices: Scientists shed light on how the magnetic properties of 2D interlayers can enhance spin accumulation effects in thermoelectric heterostructures January 29th, 2021

New technique builds super-hard metals from nanoparticles January 22nd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project