Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors

Proposed hardware implementation of the QEC code. The circuit consists of two Josephson junctions coupled by a gyrator, highlighted in red.

CREDIT
M. Rymarz et al., Phys Rev X (2021), https://doi.org/10.1103/PhysRevX.11.011032 (CC BY 4.0)
Proposed hardware implementation of the QEC code. The circuit consists of two Josephson junctions coupled by a gyrator, highlighted in red. CREDIT M. Rymarz et al., Phys Rev X (2021), https://doi.org/10.1103/PhysRevX.11.011032 (CC BY 4.0)

Abstract:
Building a universal quantum computer is a challenging task because of the fragility of quantum bits, or qubits for short. To deal with this problem, various types of error correction have been developed. Conventional methods do this by active correction techniques. In contrast, researchers led by Prof. David DiVincenzo from Forschungszentrum Jülich and RWTH Aachen University, together with partners from the University of Basel and QuTech Delft, have now proposed a design for a circuit with passive error correction. Such a circuit would already be inherently fault protected and could significantly accelerate the construction of a quantum computer with a large number of qubits.

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors

Jülich, Germany | Posted on February 19th, 2021

In order to encode quantum information in a reliable way, usually, several imperfect qubits are combined to form a so-called logical qubit. Quantum error correction codes, or QEC codes for short, thus make it possible to detect errors and subsequently correct them, so that the quantum information is preserved over a longer period of time.

In principle, the techniques work in a similar way to active noise cancellation in headphones: In a first step, any fault is detected. Then, a corrective operation is performed to remove the error and restore the information to its original pure form.

However, the application of such active error correction in a quantum computer is very complex and comes with an extensive use of hardware. Typically, complex error-correcting electronics are required for each qubit, making it difficult to build circuits with many qubits, as required to build a universal quantum computer.

The proposed design for a superconducting circuit, on the other hand, has a kind of built-in error correction. The circuit is designed in such a way that it is already inherently protected against environmental noise while still controllable. The concept thus bypasses the need for active stabilization in a highly hardware-efficient manner, and would therefore be a promising candidate for a future large-scale quantum processor that has a large number of qubits.

"By implementing a gyrator - a two port device that couples current on one port to voltage on the other - in between two superconducting devices (so called Josephson junctions), we could waive the demand of active error detection and stabilization: when cooled down, the qubit is inherently protected against common types of noise," said Martin Rymarz, a PhD student in the group of David DiVincenzo and first author of the paper, published in Physical Review X.

"I hope that our work will inspire efforts in the lab; I recognize that this, like many of our proposals, may be a bit ahead of its time", said David DiVincenzo, Founding Director of the JARA-Institute for Quantum Information at RWTH Aachen University and Director of the Institute of Theoretical Nanoelectronics (PGI-2) at Forschungszentrum Jülich. "Nevertheless, given the professional expertise available, we recognize the possibility to test our proposal in the lab in the foreseeable future".

David DiVincenzo is considered a pioneer in the development of quantum computers. Among other things, his name is associated with the criteria that a quantum computer must fulfil, the so-called "DiVincenzo criteria".

####

For more information, please click here

Contacts:
Tobias Schloesser

49-246-161-4771

@fz_juelich

Copyright © Forschungszentrum Jülich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project