Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Going Organic: uOttawa team realizing the limitless possibilities of wearable electronics

Dr. Benoît Lessard says that organic electronics are the best technology for creating wearable sensors and artificial skin
Dr. Benoît Lessard says that organic electronics are the best technology for creating wearable sensors and artificial skin

Abstract:
Benoît Lessard and his team are developing carbon-based technologies which could lead to improved flexible phone displays, make robotic skin more sensitive and allow for wearable electronics that could monitor the physical health of athletes in real-time.

Going Organic: uOttawa team realizing the limitless possibilities of wearable electronics

Ottawa, Canada | Posted on January 28th, 2021

With the help of the Canadian Light Source (CLS) at the University of Saskatchewan (USask), a team of Canadian and international scientists have evaluated how thin film structure correlates to organic thin-film transistors performance.

Organic electronics use carbon-based molecules to create more flexible and efficient devices. The display of our smart phones is based on organic-LED technology, which uses organic molecules to emit bright light and others to respond to touch.

Lessard, the corresponding author of a recent paper published in ACS Applied Materials and Interfaces, is excited about the data his team has collected at the HXMA beamline. As Canada Research Chair in Advanced Polymer Materials and Organic Electronics and Associate Professor at the University of Ottawa in the Department of Chemical and Biological Engineering, Lessard is working on furthering the technology behind organic thin-film transistors.

To improve on this technology the team is engineering the design and processing of phthalocyanines, molecules used traditionally as dyes and pigments.

"The features that make a molecule bright and colourful are features that make them able to absorb and emit light effectively." Lessard said. "A lot of things we want in a dye or pigment is the same thing we are looking for in your OLED display --brightly coloured things that make light."

Phthalocyanines have been used in photocopiers and similar technologies since the 1960s. Repurposing these molecules ¬for use in organic electronics helps keep costs down and makes the manufacturing of these devices more practical, allowing for their use in many unusual applications.

"The computer we are using has a billion transistors, but if you want to have artificial skin for robotics or wearable sensors, you are going to need flexible, bendable electronics and the best way to do that is to go organic," Lessard said.

Organic electronic technologies can be used in artificial skin for burn victims or electronic skin for robots. Organic sensors could be imbedded in athletic clothing and could send information to coaches who could observe an athlete's hydration levels by monitoring what is lost in their sweat.

"The applications are sort of anything you can dream of," Lessard said.

Lessard has also used this technology in the creation of sensors that detect cannabinoids, the active molecules in cannabis. He is co-founder of a spin-off company called Ekidna Sensing, which develops rapid tests for the cannabis industry based on similar technologies.

"Everything we are learning at the synchrotron could help us towards this goal of the start-up company," Lessard said.

While there are table-top technologies available, they aren't powerful enough to reveal what happens at the interface, which is only a couple of nanometers thick. The team couldn't have generated the data needed for understanding how the transistors perform without the help of the CLS.

####

For more information, please click here

Contacts:
Justine Boutet

613-762-2908

For more information, contact:

Victoria Martinez
Communications Coordinator
306-716-6112

Copyright © University of Ottawa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Cranston, Rosemary R., Mario C. Vebber, Jonatas Faleiro Berbigier, Nicole A. Rice, Claire Tonnelé, Zachary J. Comeau, Nicholas T. Boileau et al. "Thin-Film Engineering of Solution-Processable n-Type Silicon Phthalocyanines for Organic Thin-Film Transistors." ACS Applied Materials & Interfaces (2020):

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Organic Electronics

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Scientists have proposed a new material for perovskite solar cells: It is cheaper its analogues, easier to manufacture and to modify October 28th, 2022

Wearable electronics

Underwater movement sensor alerts when a swimmer might be drowning October 7th, 2022

Disposable electronics on a simple sheet of paper October 7th, 2022

New chip ramps up AI computing efficiency August 19th, 2022

Engineers fabricate a chip-free, wireless electronic “skin”: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Flexible Electronics

Disposable electronics on a simple sheet of paper October 7th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Chip Technology

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project