Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Going Organic: uOttawa team realizing the limitless possibilities of wearable electronics

Dr. Benoît Lessard says that organic electronics are the best technology for creating wearable sensors and artificial skin
Dr. Benoît Lessard says that organic electronics are the best technology for creating wearable sensors and artificial skin

Abstract:
Benoît Lessard and his team are developing carbon-based technologies which could lead to improved flexible phone displays, make robotic skin more sensitive and allow for wearable electronics that could monitor the physical health of athletes in real-time.

Going Organic: uOttawa team realizing the limitless possibilities of wearable electronics

Ottawa, Canada | Posted on January 28th, 2021

With the help of the Canadian Light Source (CLS) at the University of Saskatchewan (USask), a team of Canadian and international scientists have evaluated how thin film structure correlates to organic thin-film transistors performance.

Organic electronics use carbon-based molecules to create more flexible and efficient devices. The display of our smart phones is based on organic-LED technology, which uses organic molecules to emit bright light and others to respond to touch.

Lessard, the corresponding author of a recent paper published in ACS Applied Materials and Interfaces, is excited about the data his team has collected at the HXMA beamline. As Canada Research Chair in Advanced Polymer Materials and Organic Electronics and Associate Professor at the University of Ottawa in the Department of Chemical and Biological Engineering, Lessard is working on furthering the technology behind organic thin-film transistors.

To improve on this technology the team is engineering the design and processing of phthalocyanines, molecules used traditionally as dyes and pigments.

"The features that make a molecule bright and colourful are features that make them able to absorb and emit light effectively." Lessard said. "A lot of things we want in a dye or pigment is the same thing we are looking for in your OLED display --brightly coloured things that make light."

Phthalocyanines have been used in photocopiers and similar technologies since the 1960s. Repurposing these molecules ¬for use in organic electronics helps keep costs down and makes the manufacturing of these devices more practical, allowing for their use in many unusual applications.

"The computer we are using has a billion transistors, but if you want to have artificial skin for robotics or wearable sensors, you are going to need flexible, bendable electronics and the best way to do that is to go organic," Lessard said.

Organic electronic technologies can be used in artificial skin for burn victims or electronic skin for robots. Organic sensors could be imbedded in athletic clothing and could send information to coaches who could observe an athlete's hydration levels by monitoring what is lost in their sweat.

"The applications are sort of anything you can dream of," Lessard said.

Lessard has also used this technology in the creation of sensors that detect cannabinoids, the active molecules in cannabis. He is co-founder of a spin-off company called Ekidna Sensing, which develops rapid tests for the cannabis industry based on similar technologies.

"Everything we are learning at the synchrotron could help us towards this goal of the start-up company," Lessard said.

While there are table-top technologies available, they aren't powerful enough to reveal what happens at the interface, which is only a couple of nanometers thick. The team couldn't have generated the data needed for understanding how the transistors perform without the help of the CLS.

####

For more information, please click here

Contacts:
Justine Boutet

613-762-2908

For more information, contact:

Victoria Martinez
Communications Coordinator
306-716-6112

Copyright © University of Ottawa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Cranston, Rosemary R., Mario C. Vebber, Jonatas Faleiro Berbigier, Nicole A. Rice, Claire Tonnelé, Zachary J. Comeau, Nicholas T. Boileau et al. "Thin-Film Engineering of Solution-Processable n-Type Silicon Phthalocyanines for Organic Thin-Film Transistors." ACS Applied Materials & Interfaces (2020):

Related News Press

News and information

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Organic Electronics

Light-emitting tattoo engineered for the first time: Scientists at UCL and the IIT -Istituto Italiano di Tecnologia (Italian Institute of Technology) have created a temporary tattoo with light-emitting technology used in TV and smartphone screens, paving the way for a new type of March 4th, 2021

Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021

Wearable electronics

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Flexible Electronics

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021

Faraday fabrics? MXene-coated fabric could contain electronic interference in wearable devices December 11th, 2020

Possible Futures

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Chip Technology

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Knowledge and Power: Oxford Instruments Plasma Technology and LayTec join forces to provide critical front end processing solutions for the production of compound semiconductor devices April 7th, 2021

Discoveries

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Announcements

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

A new agent for the brain diseases: mRNA April 9th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project