Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A little soap simplifies making 2D nanoflakes: Rice lab’s experiments refine processing of hexagonal boron nitride

The image displays the exfoliation of hexagonal boron nitride into atomically thin nanosheets aided by surfactants, a process refined by chemists at Rice University. (Credit: Ella Maru Studio)
The image displays the exfoliation of hexagonal boron nitride into atomically thin nanosheets aided by surfactants, a process refined by chemists at Rice University. (Credit: Ella Maru Studio)

Abstract:
Just a little soap helps clean up the challenging process of preparing two-dimensional hexagonal boron nitride (hBN).

A little soap simplifies making 2D nanoflakes: Rice lab’s experiments refine processing of hexagonal boron nitride

Houston, TX | Posted on January 27th, 2021

Rice University chemists have found a way to get the maximum amount of quality 2D hBN nanosheets from its natural bulk form by processing it with surfactant (aka soap) and water. The surfactant surrounds and stabilizes the microscopic flakes, preserving their properties.

Experiments by the lab of Rice chemist Angel Martí identified the “sweet spot” for making stable dispersions of hBN, which can be processed into very thin antibacterial films that handle temperatures up to 900 degrees Celsius (1,652 degrees Fahrenheit).

The work led by Martí, alumna Ashleigh Smith McWilliams and graduate student Cecilia Martínez-Jiménez is detailed in the American Chemical Society journal ACS Applied Nano Materials.

“Boron nitride materials are interesting, particularly because they are extremely resistant to heat,” Martí said. “They are as light as graphene and carbon nanotubes, but you can put hBN in a flame and nothing happens to it.”

He said bulk hBN is cheap and easy to obtain, but processing it into microscopic building blocks has been a challenge. “The first step is to be able to exfoliate and disperse them, but research on how to do that has been scattered,” Martí said. “When we decided to set a benchmark, we found the processes that have been extremely useful for graphene and nanotubes don’t work as well for boron nitride.”

Sonicating bulk hBN in water successfully exfoliated the material and made it soluble. “That surprised us, because nanotubes or graphene just float on top,” Martí said. “The hBN dispersed throughout, though they weren’t particularly stable.

“It turned out the borders of boron nitride crystals are made of amine and nitric oxide groups and boric acid, and all of these groups are polar (with positive or negative charge),” he said. “So when you exfoliate them, the edges are full of these functional groups that really like water. That never happens with graphene.”

Experiments with nine surfactants helped them find just the right type and amount to keep 2D hBN from clumping without cutting individual flakes too much during sonication. The researchers used 1% by weight of each surfactant in water, added 20 milligrams of bulk hBN, then stirred and sonicated the mix.

Spinning the resulting solutions at low and high rates showed the greatest yield came with the surfactant known as PF88 under 100-gravity centrifugation, but the highest-quality nanosheets came from all the ionic surfactants under 8,000 g centrifugation, with the greatest stability from common ionic surfactants SDS and CTAC.

DTAB -- short for dodecyltrimethylammonium bromide -- under high centrifugation proved best at balancing the yield and quality of 2D hBN.

The researchers also produced a transparent film from hBN nanosheets dispersed in SDS and water to demonstrate how they can be processed into useful products.

“We describe the steps you need to do to produce high-quality hBN flakes,” Martí said. “All of the steps are important, and we were able to bring to light the consequences of each one.”

Co-authors of the paper are Rice graduate student Cedric Ginestra; graduate student Asia Matatyaho Ya’akobi and Yeshayahu Talmon, professor emeritus of chemical engineering, at Technion-Israel Institute of Technology; and Matteo Pasquali, the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, of chemistry and of materials science and nanoengineering at Rice. Martí is a professor of chemistry, of bioengineering and of materials science and nanoengineering.

The National Science Foundation, Air Force Office of Scientific Research and the National Council of Science and Technology (CONACyT) of Mexico supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Marti Research Group:

Department of Chemistry:

Wiess School of Natural Sciences:

Related News Press

News and information

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

A new agent for the brain diseases: mRNA April 9th, 2021

Graphene/ Graphite

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

2 Dimensional Materials

Chile coating and composite industry makes leap forward leveraging graphene nanotube solutions April 9th, 2021

3D design leads to first stable and strong self-assembling 1D nanographene wires April 6th, 2021

2D materials for conducting hole currents from grain boundaries in perovskite solar cells April 2nd, 2021

Kirigami-style fabrication may enable new 3D nanostructures April 2nd, 2021

Govt.-Legislation/Regulation/Funding/Policy

Better solutions for making hydrogen may lie just at the surface April 9th, 2021

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

3D design leads to first stable and strong self-assembling 1D nanographene wires April 6th, 2021

Qubits comprised of holes could be the trick to build faster, larger quantum computers: Electron holes could be the solution to operational speed/coherence trade-off April 2nd, 2021

Possible Futures

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Chip Technology

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Knowledge and Power: Oxford Instruments Plasma Technology and LayTec join forces to provide critical front end processing solutions for the production of compound semiconductor devices April 7th, 2021

Discoveries

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Materials/Metamaterials

Chile coating and composite industry makes leap forward leveraging graphene nanotube solutions April 9th, 2021

Scientists observe role of cavitation in glass fracturing April 2nd, 2021

DNA--Metal double helix: Single-stranded DNA as supramolecular template for highly organized palladium nanowires March 26th, 2021

Fast-acting, color-changing molecular probe senses when a material is about to fail March 25th, 2021

Announcements

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

A new agent for the brain diseases: mRNA April 9th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Graphene: Everything under control: Research team demonstrates control mechanism for quantum material April 9th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Military

Fast-acting, color-changing molecular probe senses when a material is about to fail March 25th, 2021

Building tough 3D nanomaterials with DNA: Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods March 19th, 2021

Nanotech scientists create world's smallest origami bird March 17th, 2021

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Controlling bubble formation on electrodes: Study finds the wettability of porous electrode surfaces is key to making efficient water-splitting or carbon-capturing systems March 26th, 2021

Building tough 3D nanomaterials with DNA: Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods March 19th, 2021

Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps March 18th, 2021

Nanotech scientists create world's smallest origami bird March 17th, 2021

Research partnerships

TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

CEA-Leti & Dolphin Design Report FD-SOI Breakthrough that Boosts Operating Frequency by 450% and Reduces Power Consumption by 30%: Joint Paper Presented at ISSCC 2021 Shows How New Adaptive Back-Biasing Technique Overcomes Integration Limits in Chip Design Flows February 23rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project