Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Transition metal 'cocktail' helps make brand new superconductors: Concept of high entropy alloys provides a discovery platform for new superconductors

Schematic of the CuAl2-type crystal structure of the newly created superconducting Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 compound, with an HEA-type Tr site.

CREDIT
Tokyo Metropolitan University
Schematic of the CuAl2-type crystal structure of the newly created superconducting Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 compound, with an HEA-type Tr site. CREDIT Tokyo Metropolitan University

Abstract:
Researchers from Tokyo Metropolitan University mixed and designed a new, high entropy alloy (HEA) superconductor, using extensive data on simple superconducting substances with a specific crystal structure. HEAs are known to preserve superconducting characteristics up to extremely high pressures. The new superconductor, Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2, has a superconducting transition at 8K, a relatively high temperature for an HEA. The team's approach may be applied to discovering new superconducting materials with specific desirable properties.

Transition metal 'cocktail' helps make brand new superconductors: Concept of high entropy alloys provides a discovery platform for new superconductors

Tokyo, Japan | Posted on January 8th, 2021

It's been over a hundred years since the discovery of superconductivity, where certain materials were found to suddenly show minimal resistance to electrical currents below a transition temperature. As we explore ways to eliminate power waste, a way to dramatically reduce losses in power transmission is a fascinating prospect. But the widespread use of superconductivity is held back by the demands of existing superconductors, particularly the low temperatures required. Scientists need a way to discover new superconducting materials without brute-force trial and error, and tune key properties.

A team led by Associate Professor Yoshikazu Mizuguchi at Tokyo Metropolitan University have been pioneering a "discovery platform" that has already led to the design of many new superconducting substances. Their method is based on high entropy alloys (HEAs), where certain sites in simple crystal structures can be occupied by five or more elements. After being applied to heat resistant materials and medical devices, certain HEAs were found to have superconducting properties with some exceptional characteristics, particularly a retention of zero resistivity under extreme pressures. The team surveys material databases and cutting-edge research and finds a range of superconducting materials with a common crystal structure but different elements on specific sites. They then mix and engineer a structure that contains many of those elements; throughout the crystal, those "HEA sites" are occupied by one of the elements mixed (see Figure 1). They have already succeeded in creating high entropy variants of layered bismuth-sulfide superconductors and telluride compounds with a sodium chloride crystal structure.

In their latest work, they focused on the copper aluminide (CuAl2) structure. Compounds combining a transition metal element (Tr) and zirconium (Zr) into TrZr2 with this structure are known to be superconducting, where Tr could be Sc, Fe, Co, Ni, Cu, Ga, Rh, Pd, Ta, or Ir. The team combined a "cocktail" of these elements using arc melting to create a new HEA-type compound, Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2, which showed superconducting properties. They looked at both resistivity and electronic specific heat, the amount of energy used by the electrons in the material to raise the temperature, and identified a transition temperature of 8.0K. Not only is this relatively high for an HEA-type superconductor, they confirmed that the material had the hallmarks of "bulk" superconductivity.

The most exciting aspect of this is the vast range of other transition metals and ratios that can be tried and tuned to aim for higher transition temperatures and other desirable properties, all without changing the underlying crystal structure. The team hopes their success will lead to more discoveries of new HEA-type superconductors in the near future.

###

This work was supported by a JSPS KAKENHI Grant (Grant Number: 18KK0076) and a grant under the Advanced Research Program of the Human Resources Funds of Tokyo [Grant Number: H31-1].

####

For more information, please click here

Contacts:
Go Totsukawa

81-426-772-728

@TMU_PR

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Wearable sensors that detect gas leaks April 19th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Physics

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

Superconductivity

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Remote control for quantum emitters:Novel approach could become a asset in quantum computers and quantum simulation March 12th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

Better solutions for making hydrogen may lie just at the surface April 9th, 2021

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Possible Futures

Wearable sensors that detect gas leaks April 19th, 2021

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

Discoveries

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Announcements

Wearable sensors that detect gas leaks April 19th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Wearable sensors that detect gas leaks April 19th, 2021

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Controlling bubble formation on electrodes: Study finds the wettability of porous electrode surfaces is key to making efficient water-splitting or carbon-capturing systems March 26th, 2021

Building tough 3D nanomaterials with DNA: Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods March 19th, 2021

Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps March 18th, 2021

Nanotech scientists create world's smallest origami bird March 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project