Home > Press > Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally

A quantum dot (the yellow part) is connected to two lead electrodes (the blue parts). Electrons tunneling into the quantum dot from the electrodes interact with each other to form a highly correlated quantum state, called "Fermi liquid." Both nonlinear electric current passing through the quantum dot and its fluctuations that appear as a noise carry important signals, which can unveil underlying physics of the quantum liquid. It is clarified that three-body correlations of the electrons evolve significantly and play essential roles in the quantum state under the external fields that break the particle-hole or time-reversal symmetry.
CREDIT
Rui Sakano |

**Abstract:**

Theoretical physicists Yoshimichi Teratani and Akira Oguri of Osaka City University, and Rui Sakano of the University of Tokyo have developed mathematical formulas that describe a physical phenomenon happening within quantum dots and other nanosized materials. The formulas, published in the journal Physical Review Letters, could be applied to further theoretical research about the physics of quantum dots, ultra-cold atomic gasses, and quarks.

At issue is 'the Kondo effect'. This effect was first described in 1964 by Japanese theoretical physicist Jun Kondo in some magnetic materials, but now appears to happen in many other systems, including quantum dots and other nanoscale materials.

Normally, electrical resistance drops in metals as the temperature drops. But in metals containing magnetic impurities, this only happens down to a critical temperature, beyond which resistance rises with dropping temperatures.

Scientists were eventually able to show that, at very low temperatures near absolute zero, electron spins become entangled with the magnetic impurities, forming a cloud that screens their magnetism. The cloud's shape changes with further temperature drops, leading to a rise in resistance. This same effect happens when other external 'perturbations', such as a voltage or magnetic field, are applied to the metal.

Teratani, Sakano and Oguri wanted to develop mathematical formulas to describe the evolution of this cloud in quantum dots and other nanoscale materials, which is not an easy task.

To describe such a complex quantum system, they started with a system at absolute zero where a well-established theoretical model, namely Fermi liquid theory, for interacting electrons is applicable. They then added a 'correction' that describes another aspect of the system against external perturbations. Using this technique, they wrote formulas describing electrical current and its fluctuation through quantum dots.

Their formulas indicate electrons interact within these systems in two different ways that contribute to the Kondo effect. First, two electrons collide with each other, forming well-defined quasiparticles that propagate within the Kondo cloud. More significantly, an interaction called a three-body contribution occurs. This is when two electrons combine in the presence of a third electron, causing an energy shift of quasiparticles.

"The formulas' predictions could soon be investigated experimentally", Oguri says. "Studies along the lines of this research have only just begun," he adds.

The formulas could also be extended to understand other quantum phenomena, such as quantum particle movement through quantum dots connected to superconductors. Quantum dots could be a key for realizing quantum information technologies, such as quantum computers and quantum communication.

####

**About Osaka City University**

We are Osaka City University - the oldest research university in Osaka. With 9 undergraduate faculties and 11 graduate schools all dedicated to making urban life better, energy cleaner, and people healthier and happier, we have won numerous awards and have produced 2 Nobel laureates. For more information, please visit our website at https://www.osaka-cu.ac.jp/en

**For more information, please click here**

**Contacts:**

James Gracey

066-605-3454

@OCU_PR

Copyright © Osaka City University

If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Related Links |

Related News Press |

**News and information**

Wearable sensors that detect gas leaks April 19th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

**Physics**

Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries February 19th, 2021

**Superconductivity**

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Remote control for quantum emitters:Novel approach could become a asset in quantum computers and quantum simulation March 12th, 2021

**Quantum Physics**

Shedding light on perovskite films: Efficient materials for future solar cells - New model to determine photoluminescence quantum efficiency March 16th, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

**Possible Futures**

Wearable sensors that detect gas leaks April 19th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

**Quantum Computing**

Remote control for quantum emitters:Novel approach could become a asset in quantum computers and quantum simulation March 12th, 2021

Scientists stabilize atomically thin boron for practical use March 12th, 2021

**Discoveries**

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

**Announcements**

Wearable sensors that detect gas leaks April 19th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

**Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters**

Wearable sensors that detect gas leaks April 19th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

**Quantum Dots/Rods**

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

A quantum material-based diagnostic paint to sense problems before structural failure October 23rd, 2020

Turning a hot spot into a cold spot: Fano-shaped local-field responses probed by a quantum dot October 9th, 2020

**Quantum nanoscience**

Shedding light on perovskite films: Efficient materials for future solar cells - New model to determine photoluminescence quantum efficiency March 16th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

The latest news from around the world, FREE | ||

Premium Products |
||

Only the news you want to read!
Learn More |
||

Full-service, expert consulting
Learn More |
||