Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultra-fast gas flows through tiniest holes in 2D membranes: Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old e

Researchers identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old equation of fluid dynamics.

CREDIT
N Hassani & M N-Amal, Shahid Rajee University
Researchers identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old equation of fluid dynamics. CREDIT N Hassani & M N-Amal, Shahid Rajee University

Abstract:
Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania have identified ultra-fast gas flows through the tiniest holes in one-atom-thin membranes, in a study published in Science Advances.

Ultra-fast gas flows through tiniest holes in 2D membranes: Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old e

Philadelphia, PA | Posted on December 18th, 2020

The work - alongside another study from Penn on the creation of such nano-porous membranes - holds promise for numerous application areas, from water and gas purification to monitoring of air quality and energy harvesting.

In the early 20th century, renowned Danish physicist Martin Knudsen formulated theories to describe gas flows. Emerging new systems of narrower pores challenged the Knudsen descriptions of gas flows, but they remained valid and it was unknown at which point of diminishing scale they might fail.

The Manchester team - led by Professor Radha Boya, in collaboration with the University of Pennsylvania team, led by Professor Marija Drndi? - has shown for the first time that Knudsen's description seems to hold true at the ultimate atomic limit.

The science of two dimensional (2D)-materials is progressing rapidly and it is now routine for researchers to make one-atom-thin membranes. Professor Drndi?'s group in Pennsylvania developed a method to drill holes, one atom wide, on a monolayer of tungsten disulphide. One important question remained, though: to check if the atomic-scale holes were through and conducting, without actually seeing them manually, one by one. The only way previously to confirm if the holes were present and of the intended size, was to inspect them in a high resolution electron microscope.

Professor Boya's team developed a technique to measure gas flows through atomic holes, and in turn use the flow as a tool to quantify the hole density. She said: "Although it is beyond doubt that seeing is believing, the science has been pretty much limited by being able to only seeing the atomic pores in a fancy microscope. Here we have devices through which we can not only measure gas flows, but also use the flows as a guide to estimate how many atomic holes were there in the membrane to start with."

J Thiruraman, the co-first author of the study, said: "Being able to reach that atomic scale experimentally, and to have the imaging of that structure with precision so you can be more confident it's a pore of that size and shape, was a challenge."

Professor Drndi? added: "There's a lot of device physics between finding something in a lab and creating a usable membrane. That came with the advancement of the technology as well as our own methodology, and what is novel here is to integrate this into a device that you can actually take out, transport across the ocean if you wish [to Manchester], and measure."

Dr Ashok Keerthi, another lead author from the Manchester team, said: "Manual inspection of the formation of atomic holes over large areas on a membrane is painstaking and probably impractical. Here we use a simple principle, the amount of the gas the membrane lets through is a measure of how holey it is."

The gas flows achieved are several orders of magnitude larger than previously observed flows in angstrom-scale pores in literature. A one-to-one correlation of atomic aperture densities by transmission electron microscopy imaging (measured locally) and from gas flows (measured on a large scale) was combined by this study and published by the team. S Dar, a co-author from Manchester added: "Surprisingly there is no/minimal energy barrier to the flow through such tiny holes."

Professor Boya added: "We now have a robust method for confirming the formation of atomic apertures over large areas using gas flows, which is an essential step for pursuing their prospective applications in various domains including molecular separation, sensing and monitoring of gases at ultra-low concentrations."

###

This work was conducted through an international collaboration and, includes experimental teams from Manchester and Philadelphia, and as well as theoretical groups from Shahid Rajee University, Iran and the University of Antwerp, Belgium.

####

For more information, please click here

Contacts:
Erica Brockmeier


@Penn

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

2 Dimensional Materials

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project