Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > No nanoparticle risks to humans found in field tests of spray sunscreens

Abstract:
People can continue using mineral-based aerosol sunscreens without fear of exposure to dangerous levels of nanoparticles or other respirable particulates, according to Penn State research published in the journal Aerosol Science and Engineering.

No nanoparticle risks to humans found in field tests of spray sunscreens

University Park, PA | Posted on December 2nd, 2020

The findings, reported by a research team led by Jeremy Gernand, associate professor of industrial health and safety, are a result of experiments conducted using three aerosol sunscreens commonly found on store shelves.

Gernand's team simulated the application process for someone using the recommended amount of sunscreen and analyzed the released aerosols. They chose mineral-based sunscreens with silicon dioxide, zinc oxide or titanium dioxide as the active ingredient over chemical-based sunscreens because those are more commonly recommended for children and the ingredients are deemed safe by the U.S. Food and Drug Administration.

"We simulated what we considered to be a worst-case scenario for someone being exposed to aerosolized nanoparticles while applying sunscreen, and that scenario is a person applying it to their arms because the spray is so close to their face," Gernand said. "And then we pulled air samples from that location."

The goal of the research was to determine the size and concentration of aerosol particles at the location of a realistic breathing zone for the user, and to determine if those factors posed potential health risks.

The team did find trace nanoparticles of the active ingredients but the amounts were hundreds of times less than the National Institute of Occupational Safety and Health recommended exposure limit. Gernand said previous studies that pointed to dangerous exposure to nanoparticles missed the mark because they relied on an analysis of the contents, rather than field tests. The FDA completed a study on the safety of sunscreens in 2019.

Although only three products were studied, Gernand said it's unlikely other products would produce vastly different amounts of nanoparticles. Researchers found all three products to be similar in aerosolized particles produced.

"For a massive increase in particle exposure, the canister design would have to be dramatically different and most likely so would the amount of and size of the active ingredients inside," Gernand said. "Based on these results, I would be surprised to find variations in brands or formulations that amounted to hundreds of times more exposure. It's just too far away from what we observed."

###

Former undergraduate and graduate students Kexin Lai, Shu-Wei Looi, Mengfan Li, Firdevs Ilçi and Hanah Naushad in the e College of Earth and Mineral Sciences, contribute to this research.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-5689

@penn_state

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Single quantum bit achieves complex systems modeling June 9th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

Discoveries

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Announcements

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

Zinc transporter has built-in self-regulating sensor: New cryo-EM structure of a zinc-transporter protein reveals how this molecular machine functions to regulate cellular levels of zinc, an essential micronutrient June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023

Single quantum bit achieves complex systems modeling June 9th, 2023

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Safety-Nanoparticles/Risk management

Advances in nanotechnology application in biosafety materials A crucial response to COVID-19 pandemic June 9th, 2023

Underwater movement sensor alerts when a swimmer might be drowning October 7th, 2022

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nylon cooking bags, plastic-lined cups can release nanoparticles into liquids April 22nd, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project