Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food

This nanoparticle disrupts the metabolism of algae.

CREDIT
UNIGE/ Wei Liu
This nanoparticle disrupts the metabolism of algae. CREDIT UNIGE/ Wei Liu

Abstract:
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood. A research team from the University of Geneva (UNIGE), working in collaboration with the University of California at Santa Barbara, have investigated the effects of nanosilver, currently used in almost 450 products for its antibacterial properties, on the algae known as Poterioochromonas malhamensis. The results - published in the journal Scientific Reports - show that nanosilver and its derivative, ionic silver, disturb the alga's entire metabolism. Its membrane becomes more permeable, the cellular reactive oxygen species increases and photosynthesis is less effective. The Swiss-American team was able to demonstrate for the first time the metabolic perturbations induced by nanosilver following its uptake in the food vacuoles of freshwater algae, paving the way for early detection of the metabolic changes before they express themselves physiologically.

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food

Geneva, Switzerland | Posted on November 27th, 2020

The nanosilver is used for its antibacterial properties and is employed in textiles and cosmetics, inter alia. In addition, the agro-food, biomedical and biopharmaceutical industry is interested in it for developing drugs, devices and pesticides. «Since nanosilver is designed to destroy, repel or render harmless noxious organisms such as bacteria, scientists have realised that it might also be harmful to organisms that are crucial to our environment,» begins Vera Slaveykova from the Department F.A. Forel for Environmental and Aquatic Sciences in UNIGE's Faculty of Sciences. To assess the influence of nanotechnology products on phytoplankton and to evaluate the impacts on aquatic environment, the researcher team conducted a study on the alga Poterioochromonas malhamensis as a model phytoplankton species. «The phytoplankton are everywhere, in lakes and oceans," continues Professor Slaveykova. «As a whole, phytoplankton generate almost half of the oxygen we breathe. And they have a second essential role, since they are at the base of the food chain. If they accumulate nanoparticles, these will be integrated into the aquatic food chain».

Multiple disturbances

The study led by Professor Slaveykova shows that treating the algae with nanosilver disrupts the metabolism of the amino acids that are vital for producing cellular proteins, the nucleotide metabolism that is important for genes, and fatty and tricarboxylic acids making up the membranes, as well as the photosynthesis and photorespiration elements.

The study results suggest that the silver ions released by the silver nanoparticles are the main toxicity factor. «The nanosilver is internalised in the algal cells by the phagocytotic mechanism used to supply cells with organic matter,» continues Professor Slaveykova. The study is the first to demonstrate that nanoparticles can follow such internalisation path in a species of phytoplankton. «These measurements were carried out in Geneva by Dr Liu using transmission electron microscopy. This entry mechanism is only known in Poterioochromonas malhamensis; it is still unknown if other phytoplankton species express it,» explains the Geneva researcher.

To finish demonstrating nanosilver's toxicity, the international research team highlighted the fact that metabolic disturbances induce physiological dysfunctions. Professor Slaveykova observed lipid peroxidation leading to membrane permeabilization, increased oxidative stress and less efficient photosynthesis - and, it follows, reduced oxygen production.

An Approach That Needs to Be Implemented

The study underlines the full potential of metabolomics geared towards the molecular basis of the disruptions observed. «It's a fundamental contribution to the field: although the metabolomics approaches are properly in place in medical and pharmaceutical sciences, it's not at all the case for environmental toxicology where phytoplankton metabolomics is still in its infancy. The metabolomics is, therefore, a technique that offers the possibility of early detection of changes induced by a toxin, upstream of more global effects such as the alga growth inhibition and their impact on oxygen production. As it's never easy to demonstrate the relationships between cause and effect in complex environment, it is now essential to use approaches like these.»

####

For more information, please click here

Contacts:
Vera I. Slaveykova

41-223-790-335

@UNIGEnews

Copyright © University of Geneva

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Possible Futures

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Discoveries

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Announcements

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Environment

Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021

Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Color-changing indicator predicts algal blooms November 5th, 2021

Safety-Nanoparticles/Risk management

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

NIOSH requests data to help develop exposure limits for nanomaterials February 1st, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project