Home > Press > Staying ahead of the curve with 3D curved graphene
![]() |
An Electrical transport of 3D graphene with various curvature radii CREDIT Tohoku University |
Abstract:
A team of researchers has amplified 3D graphene's electrical properties by controlling its curvature.
"Our research showed the conservation and the degradation of the ultra-low dissipative transport of Dirac electrons on the 3D curved surface for the first time," said Yoichi Tanabe, leading author of the study.
Graphene is a 2D atomic-layer material, shaped like honeycombs, which possesses excellent electrical, chemical, thermal, and mechanical properties for a wide range of applications such as semiconductors, electrical batteries, and composites.
Graphene sheets stacked together form graphite which makes up the lead in our pencils. However, packing together graphene tightly means it loses its 2D electronic properties.
One way to overcome this is to separate the graphene sheets with air-filled pores--like a sponge--at the nanometer scale and make it into a three-dimensional structure. This amplifies graphene's properties for practical purposes.
But doing so is not without its challenges; converting 2D graphene into 3D graphene introduces crystal defects and a host of other problems that cause it to lose its desirable characteristics. Little is known about how the curved surface degrades the graphene's electric transport properties and whether this is the reason for graphene losing its Dirac fermions.
The research team sought to investigate this by taking a single, 2D graphene sheet and folding it into a 3D structure with a bicontinuous and open porous structure.
The structure, with a curvature radius down to 25-50 nanometers, retained the basic electronic properties of 2D graphene well. Meanwhile, the motion of electrons on the 3D curvature enhanced electron scattering that had originated from the intrinsic curvature effects. In fact, nanoscale curvature provides a new degree of freedom to manipulate graphene's electronic behaviors for the emergent and unique electrical properties of 3D graphene.
####
For more information, please click here
Contacts:
Mingwei Chen
81-222-175-992
@TohokuUniPR
Copyright © Tohoku University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
2 Dimensional Materials
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
Faraday fabrics? MXene-coated fabric could contain electronic interference in wearable devices December 11th, 2020
Graphene/ Graphite
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
Possible Futures
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Chip Technology
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021
Discoveries
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Materials/Metamaterials
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Stretching diamond for next-generation microelectronics January 5th, 2021
Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021
Announcements
Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Scientists synthetize new material for high-performance supercapacitors January 19th, 2021
Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020
New imaging method views soil carbon at near-atomic scales December 25th, 2020
New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries December 21st, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |