Home > Press > Lead-free magnetic perovskites
Abstract:
Scientists at Linköping University, Sweden, working with the perovskite family of materials have taken a step forwards and developed an optoelectronic magnetic double perovskite. The discovery opens the possibility to couple spintronics with optoelectronics for rapid and energy-efficient information storage.
Perovskites form a family of materials with many interesting properties: they are cheap to manufacture, have excellent light-emitting properties and can be tailored for different applications. Researchers have until now concentrated on developing variants for solar cells, light-emitting diodes and rapid optical communication. Perovskites can consist of many different organic and inorganic substances, but they are defined by their special cubic crystal structure. One type of perovskite that contains halogens and lead has recently been shown to have interesting magnetic properties, opening the possibility of using it in spintronics.
Spintronics is the field of technology in which information is stored about the direction of rotation of a particle (its spin), not only its charge (plus or minus). Spintronics is thought to have huge potential for the next generation of information technology, since information can be transmitted at higher speeds and with low energy consumption. It turned out, however, that the magnetic properties of halide perovskites have until now been associated only with lead-containing perovskites, which has limited the development of the material for both health and environmental reasons.
The scientists at Linköping University have now, together with a large group of colleagues in Sweden, the Czech Republic, Japan, Australia, China and the US, and led by Professor Feng Gao of LiU, managed to create non-hazardous perovskite alloy, and produce a magnetic double perovskite.
They show in an article in Science Advances that magnetic iron ions, Fe3+, are incorporated into a previously known double perovskite with interesting optoelectronic properties and consisting of caesium, silver, bismuth and bromine, Cs2AgBiBr6.
The researchers have shown in experiments that the new material has a magnetic response at temperatures below 30 K (-243.15 °C).
"These are preliminary experiments from an exploratory investigation, and we are not completely sure of the origin of the magnetic response. Our results, however, suggest that it is probably due to a weak ferromagnetic or anti-ferromagnetic response. If so, we have a whole class of new materials for future information technology. But more research is needed, not least to obtain the magnetic properties at higher temperatures", says Feng Gao.
"Perovskites are exciting materials, and they have a huge potential for use in future products that need the cheap and rapid transfer of information", he says.
###
The research has received funding from many sources, including the Knut and Alice Wallenberg Foundation and the Swedish Government Strategic Research Area in Materials Science on Functional Materials (AFM) at Linköping University.
Footnote:
The halogens are a group of common and reactive substances that includes fluorine, chlorine, bromine and iodine.
####
For more information, please click here
Contacts:
Feng Gao
46-132-86882
@liu_universitet
Copyright © Linköping University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
How photoblueing disturbs microscopy February 26th, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Perovskites
Magnetism
Scientists manipulate magnets at the atomic scale February 12th, 2021
Possible Futures
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021
How photoblueing disturbs microscopy February 26th, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
Discoveries
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Announcements
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021
Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021
How photoblueing disturbs microscopy February 26th, 2021
Changing the silkworm's diet to spin stronger silk February 26th, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |