Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Polarimetric parity-time-symmetric photonic system

The system consists of a single spatial loop, in which two equivalent polarimetric loops are formed by recirculating light waves of orthogonal polarization states in the loop. To achieve PT symmetry, the phase retardance, power ratio, and coupling coefficient between the orthogonally polarized light waves are tuned by controlling PC1 in the birefringent path, and the lasing threshold is tuned by controlling PC2 in the coupled path. PC: polarization controller; Pol.: polarizer; EDFA: erbium-doped fiber amplifier; OC: optical coupler; TOF: tunable optical filter.

CREDIT
by Lingzhi Li, Yuan Cao, Yanyan Zhi, Jiejun Zhang1, Yuting Zou, Xinhuan Feng, Bai-Ou Guan and Jianping Yao
The system consists of a single spatial loop, in which two equivalent polarimetric loops are formed by recirculating light waves of orthogonal polarization states in the loop. To achieve PT symmetry, the phase retardance, power ratio, and coupling coefficient between the orthogonally polarized light waves are tuned by controlling PC1 in the birefringent path, and the lasing threshold is tuned by controlling PC2 in the coupled path. PC: polarization controller; Pol.: polarizer; EDFA: erbium-doped fiber amplifier; OC: optical coupler; TOF: tunable optical filter. CREDIT by Lingzhi Li, Yuan Cao, Yanyan Zhi, Jiejun Zhang1, Yuting Zou, Xinhuan Feng, Bai-Ou Guan and Jianping Yao

Abstract:
Parity-time-symmetric photonic and optoelectronic systems is being intensively explored recently, which has been bringing about significant fundamental physics and technological outcomes. One of the main characteristics of a PT symmetric system is its effectiveness in mode selection in a single-mode lasing, in which two cross-coupled and spatially separated resonators with identical geometries are usually employed. A PT-symmetric laser system has a strongly enhanced gain difference between the dominant mode and the side modes, thus making single-mode oscillation possible. However, the strict requirements not only lead to increased structural complexity, high cost, and strong susceptibility to environmental perturbations, but also limit the compactness when on-chip devices are required.

Polarimetric parity-time-symmetric photonic system

Changchun, China | Posted on October 9th, 2020

In a new paper published in Light Science & Application, a team of scientists, led by Professor Jiejun Zhang from Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University has proposed a new technique to realizing PT symmetry in a single spatial resonator. By the manipulation of the polarization-dependent response of the spatial resonator, localized eigenfrequencies, gain, loss, and coupling coefficients of two polarimetric loops formed by lights of orthogonal polarization states can be tuned to achieve PT symmetry. The proposed polarimetric PT symmetry concept opens new avenues for the implementation of non-Hermitian photonic systems, in which a variety of optical parameters, including polarization, wavelength, transverse mode and optical angular momentum, can be used.

As a demonstration, a fiber ring laser based on this concept supporting stable and single-mode lasing without using a high-Q optical filter is implemented. The PT-symmetric system is implemented in a single fiber loop with polarimetric diversity. In the experiment, the fiber ring laser has a cavity length of 41 m with a mode spacing as small as 4.88 MHz. The employment of polarimetric PT symmetry enables effective suppression of the sidemodes with a suppression ratio greater than 47.9 dB. The linewidth of the light generated by the fiber ring laser is measured to be 129 kHz with a wavelength-tunable range of 35 nm.

"In one single physical fiber loop, the polarimetric diversity is implemented by controlling the polarization states of light via polarization controllers. An erbium-doped fiber amplifier is incorporated to provide an optical gain. By tuning the loss, gain and coupling strength of the two polarimetric modes, PT symmetry is implemented, of which can be observed from the output spectrum. Since only a single physical loop is required, the implementation is significantly simplified, and the stability is highly improved."

"The measured laser linewidth is 129 kHz, which is broadened due to the high susceptibility of the system to environmental disturbances due to a long fiber in the cavity. By suppressing those noises using active cavity stabilization techniques or isolated laser systems, the linewidth is possible to be reduced to its Lorentzian linewidth of 2.4 kHz." they added.

"The presented technique provides a new concept of implementing PT symmetry in non-spatial parameter space in photonic systems. Not limited to the polarimetric parameter space, one can adopt this concept by constructing various parameter spaces. With simplified physical structures, this proposed concept is ready to be applied in other fields to promote the application of the PT symmetry mechanism." the scientists forecast.

####

For more information, please click here

Contacts:
Jiejun Zhang

Copyright © Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Possible Futures

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Optical computing/Photonic computing

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Landmark discovery could improve Army lasers, precision sensors September 29th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

A phonon laser - coherent vibrations from a self-breathing resonator September 11th, 2020

Discoveries

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Announcements

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GLOBALFOUNDRIES Accelerating Innovation in IoT and Wearables with Adaptive Body Bias Feature on 22FDX Platform October 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Making disorder for an ideal battery: Manufacturing safer, more powerful batteries that use geopolitically stable resources requires solid electrolytes and replacing lithium with sodium. A chemical solution is now being offered to battery developers. October 16th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Photonics/Optics/Lasers

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Landmark discovery could improve Army lasers, precision sensors September 29th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project