Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene detector reveals THz light's polarization

Artist's rendering of a phase-sensitive terahertz interferometer.

CREDIT
Daria Sokol/MIPT Press Office
Artist's rendering of a phase-sensitive terahertz interferometer. CREDIT Daria Sokol/MIPT Press Office

Abstract:
Physicists have created a broadband detector of terahertz radiation based on graphene. The device has potential for applications in communication and next-generation information transmission systems, security and medical equipment. The study came out in ACS Nano Letters.

Graphene detector reveals THz light's polarization

Moscow, Russia | Posted on October 8th, 2020

The new detector relies on the interference of plasma waves. Interference as such underlies many technological applications and everyday phenomena. It determines the sound of musical instruments and causes the rainbow colors in soap bubbles, along with many other effects. The interference of electromagnetic waves is harnessed by various spectral devices used to determine the chemical composition, physical and other properties of objects -- including very remote ones, such as stars and galaxies.

Plasma waves in metals and semiconductors have recently attracted much attention from researchers and engineers. Like the more familiar acoustic waves, the ones that occur in plasmas are essentially density waves, too, but they involve charge carriers: electrons and holes. Their local density variation gives rise to an electric field, which nudges other charge carriers as it propagates through the material. This is similar to how the pressure gradient of a sound wave impels the gas or liquid particles in an ever expanding region. However, plasma waves die down rapidly in conventional conductors.

That said, two-dimensional conductors enable plasma waves to propagate across relatively large distances without attenuation. It therefore becomes possible to observe their interference, yielding much information about the electronic properties of the material in question. The plasmonics of 2D materials has emerged as a highly dynamic field of condensed matter physics.

Over the past 10 years, scientists have come a long way detecting THz radiation with graphene-based-devices. Researchers have explored the mechanisms of T-wave interaction with graphene and created prototype detectors, whose characteristics are on par with those of similar devices based on other materials.

However, studies have so far not looked at the details of detector interaction with distinctly polarized T-rays. That said, devices sensitive to the waves' polarization would be of use in many applications. The study reported in this story experimentally demonstrated how detector response depends on the polarization of incident radiation. Its authors also explained why this is the case.

Study co-author Yakov Matyushkin from the MIPT Laboratory of Nanocarbon Materials ?ommented: "The detector consists of a silicon wafer 4 by 4 millimeters across, and a tiny piece of graphene 2 by 5 thousandths of a millimeter in size. The graphene is connected to two flat contact pads made of gold, whose bow tie shape makes the detector sensitive to the polarization and phase of incident radiation. Besides that, the graphene layer also meets another gold contact at the top, with a nonconductive layer of aluminum oxide interlaid between them."

In microelectronics, this structure is known as a field transistor (fig. 1), with the two side contacts usually referred to as a source and a drain. The top contact is called a gate.

Terahertz radiation is a narrow band of the electromagnetic spectrum between microwaves and the far infrared light. From the applications standpoint, an important feature of T-waves is that they pass through living tissue and undergo partial absorption but cause no ionization and therefore do not harm the body. This sets THz radiation apart from X-rays, for example.

Accordingly, the applications traditionally considered for T-rays are medical diagnostics and security screening. THz detectors are also used in astronomy. Another emerging application is data transmission at THz frequencies. This means the new detector could be useful in establishing the 5G and 6G next-generation communication standards.

"Terahertz radiation is directed at an experimental sample, orthogonally to its surface. This generates photovoltage in the sample, which can be picked up by external measurement devices via the detector's gold contacts," commented study co-author Georgy Fedorov, deputy head of the MIPT Laboratory of Nanocarbon Materials. "What's crucial here is what the nature of the detected signal is. It can actually be different, and it varies depending on a host of external and internal parameters: sample geometry, frequency, radiation polarization and power, temperature, etc."

Notably, the new detector relies on the kind of graphene already produced industrially. Graphene comes in two types: The material can either be mechanically exfoliated or synthesized by chemical vapor deposition. The former type has a higher quality, fewer defects and impurities, and holds the record for charge carrier mobility, which is a crucial property for semiconductors. However, it is CVD graphene that the industry can scalably manufacture already today, making it the material of choice for devices with an ambition for mass production.

Another co-author of the study, Maxim Rybin from MIPT and Prokhorov General Physics Institute of the Russian Academy of Sciences is the CEO of graphene manufacturer Rusgraphene, and he had this to say about the technology: "The fact that it was CVD graphene that we observed plasma wave interference in, means such graphene-based THz detectors are fit for industrial production. As far as we know, this is the first observation of plasma wave interference in CVD graphene so far, so our research has expanded the material's potential industrial applications."

The team showed that the nature of the new detector's photoresponse has to do with plasma wave interference in the transistor channel. Wave propagation begins at the two opposite ends of the channel (fig. 2), and the special geometry of the antenna makes the device sensitive to the polarization and phase of the detected radiation. These features mean the detector could prove useful in building communication and information transmission systems that operate at THz and sub-THz frequencies.

The study reported in this story was co-authored by researchers from the MIPT Laboratory of Nanocarbon Materials and their colleagues from Moscow State Pedagogical University, Ioffe Institute of the Russian Academy of Sciences, and the University of Regensburg, Germany. This research was supported by the Russian Foundation for Basic Research and the Russian Ministry of Science and Higher Education.

####

For more information, please click here

Contacts:
Varvara Bogomolova

7-916-147-4496

@mipt_eng

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Graphene/ Graphite

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

The most sensitive and fastest graphene microwave bolometer September 30th, 2020

Wireless/telecommunications/RF/Antennas/Microwaves

Turning a hot spot into a cold spot: Fano-shaped local-field responses probed by a quantum dot October 9th, 2020

28HV Solution Accelerates GLOBALFOUNDRIES Leadership in OLED Display Drivers for Mobile Devices: With more than 75 million units shipped to leading smartphone suppliers, GF’s 28HV solution is optimized to enable faster, brighter, sharper, and more power-efficient OLED displays October 1st, 2020

GLOBALFOUNDRIES Announces New 22FDX+ Platform, Extending FDX Leadership with Specialty Solutions for IoT and 5G Mobility: 22FDX+ platform builds upon the success of GF’s industry-leading 22FDX platform, with more than 350 million chips shipped October 1st, 2020

Govt.-Legislation/Regulation/Funding/Policy

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

New NIST project to build nano-thermometers could revolutionize temperature imaging: Cheaper refrigerators? Stronger hip implants? A better understanding of human disease? All of these could be possible October 9th, 2020

Multi-institutional team extracts more energy from sunlight with advanced solar panels October 6th, 2020

'Like a fishing net,' nanonet collapses to trap drug molecule: New method presents possibilities for rapidly making and testing vaccine formulations October 6th, 2020

Possible Futures

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Discoveries

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Materials/Metamaterials

Development of cost-efficient electrocatalyst for hydrogen production: Development of a highly efficient and durable electrocatalyst for water electrolysis that will lead to cost-efficient hydrogen production. Trace amounts of titanium doping on low-cost molybdenum phosphide resu October 9th, 2020

Multi-institutional team extracts more energy from sunlight with advanced solar panels October 6th, 2020

The most sensitive and fastest graphene microwave bolometer September 30th, 2020

The ICN2 co-leads a roadmap on quantum materials September 29th, 2020

Announcements

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GLOBALFOUNDRIES Accelerating Innovation in IoT and Wearables with Adaptive Body Bias Feature on 22FDX Platform October 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Making disorder for an ideal battery: Manufacturing safer, more powerful batteries that use geopolitically stable resources requires solid electrolytes and replacing lithium with sodium. A chemical solution is now being offered to battery developers. October 16th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Tools

Bruker Launches Advanced In-Situ Nanomechanical Test Instrument for Analyzing Materials Deformation in Electron Microscopes: Hysitron PI 89 SEM PicoIndenter Offers Unprecedented Range and Flexibility October 15th, 2020

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

New NIST project to build nano-thermometers could revolutionize temperature imaging: Cheaper refrigerators? Stronger hip implants? A better understanding of human disease? All of these could be possible October 9th, 2020

Graphene microbubbles make perfect lenses: New method generates precisely controlled graphene microbubbles with perfectly spherical curvature for lenses October 9th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project