Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Landmark discovery could improve Army lasers, precision sensors

Army-funded research at NYU develops a method to create colloids that crystallize into the diamond lattice.

CREDIT
NYU Tandon School of Engineering
Army-funded research at NYU develops a method to create colloids that crystallize into the diamond lattice. CREDIT NYU Tandon School of Engineering

Abstract:
An Army-funded landmark discovery at New York University could change the way researchers develop and use optical technologies, such as lasers, sensors and photonic circuits over the next decade.

Landmark discovery could improve Army lasers, precision sensors

Research Triangle Park, NC | Posted on September 29th, 2020

After years of research, the team of scientists achieved what many thought was perhaps impossible-they developed a method to create colloids that crystallize into the diamond lattice. This photonic technique, published in Nature, could lead to cheap, reliable and scalable fabrication of 3D photonic crystals for optical circuits and light filters.

These 3D photonic crystals--self-assembled formations of miniscule materials in a stable assembly--could open the door to lightweight high-efficiency lasers, precise light control with 3D photonic circuits and new materials for managing thermal or radio signatures.

High-efficiency lasers are key to Army modernization priorities, including Air and Missile Defense, as they play a key role in both precision sensing and directed energy systems. Likewise, efficient lasers and integrated photonic circuits will play a key role in next-generation technologies like light-based quantum computing, atomic clocks and gyroscopes for precision navigation and timing, and optical systems with improved size, weight, and power.

"This long-sought demonstration of the first self-assembled colloidal diamond lattices will unlock new research and development opportunities for important Department of Defense technologies which could benefit from 3D photonic crystals," said Dr. Evan Runnerstrom, program manager, Army Research Office, an element of the U.S. Army Combat Capabilities Development Command's Army Research Laboratory.

Colloidal crystals, made up of spheres hundreds of times smaller than the diameter of a human hair, can be arranged in different crystalline shapes depending on how the spheres are linked to one another. Each colloid attaches to another using strands of DNA glued to surfaces of the colloids that function as a kind of molecular Velcro. When colloids collide with each other in a liquid bath, the DNA snags and the colloids are linked. Depending on where the DNA is attached to the colloid, they can be programmed to spontaneously create complex structures.

This process has been used in the past to create strings of colloids and even close-packed cubic colloidal crystals, but not the diamond structure--which displays an optical band gap for visible light. Much as a semiconductor filters out electrons in a circuit, an optical band gap completely rejects certain wavelengths of light. Filtering light in this way is practical only if the colloids are arranged in a diamond formation, a process previously deemed too difficult and expensive to perform at commercial scale.

"There's been a great desire among engineers to make a diamond structure," said Dr. David Pine, professor of chemical and biomolecular engineering at the NYU Tandon School of Engineering. "Most researchers had given up on it, to tell you the truth - we may be the only group in the world who is still working on this. I think the publication of the paper will come as something of a surprise to the community."

The investigators discovered that they could use a steric interlock mechanism that would spontaneously produce the necessary staggered bonds to make this structure possible. When these pyramidal colloids approached each other, they linked in the necessary orientation to generate a diamond formation. Rather than going through the painstaking and expensive process of building these structures through the use of top-down approaches like nanofabrication, this mechanism allows the colloids to structure themselves from the bottom-up without the need for outside interference. Furthermore, the diamond structures are stable, even when the liquid they form in is removed.

The team and their collaborators--including researchers from the Centre de Recherche Paul Pascal - CNRS, Pessac, France; and Sungkyunkwan University, Suwon, South Korea--are now focused on converting these colloidal diamonds into 3D photonic crystals that can be used in a practical setting. They are already creating materials using their new structures that can filter out optical wavelengths in order to prove their usefulness in future technologies.

"I am thrilled with this result because it wonderfully illustrates a central goal of ARO's materials design program -- to support high-risk, high-reward research that unlocks bottom-up routes to creating extraordinary materials that were previously impossible to make," Runnerstrom said.

###

The National Science Foundation also funded this research.

Visit the laboratory's Media Center to discover more Army science and technology stories

####

About US Army Research Laboratory
CCDC Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command's core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more lethal to win the nation's wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.

For more information, please click here

Contacts:
Lisa B Bistreich-Wolfe

919-549-4372

@ArmyResearchLab

Copyright © US Army Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Nanofabrication

Machine learning peeks into nano-aquariums August 31st, 2020

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment March 20th, 2020

SUWA: A hyperstable artificial protein that does not denature in high temperatures above 100°C February 28th, 2020

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

Govt.-Legislation/Regulation/Funding/Policy

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

New NIST project to build nano-thermometers could revolutionize temperature imaging: Cheaper refrigerators? Stronger hip implants? A better understanding of human disease? All of these could be possible October 9th, 2020

Graphene detector reveals THz light's polarization October 8th, 2020

Multi-institutional team extracts more energy from sunlight with advanced solar panels October 6th, 2020

Possible Futures

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Chip Technology

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

GLOBALFOUNDRIES Accelerating Innovation in IoT and Wearables with Adaptive Body Bias Feature on 22FDX Platform October 16th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

Optical computing/Photonic computing

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Polarimetric parity-time-symmetric photonic system October 9th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

A phonon laser - coherent vibrations from a self-breathing resonator September 11th, 2020

Discoveries

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Announcements

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Graphenea awarded “Best Graphene Firm” prize October 20th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GLOBALFOUNDRIES Accelerating Innovation in IoT and Wearables with Adaptive Body Bias Feature on 22FDX Platform October 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Making disorder for an ideal battery: Manufacturing safer, more powerful batteries that use geopolitically stable resources requires solid electrolytes and replacing lithium with sodium. A chemical solution is now being offered to battery developers. October 16th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Military

Tandon Researchers develop method to create colloidal diamonds: The long-awaited photonic technique could change the way optical technologies are developed and used over the next decade September 24th, 2020

Tandon Researchers develop method to create colloidal diamonds: The long-awaited photonic technique could change the way optical technologies are developed and used over the next decade September 24th, 2020

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Photonics/Optics/Lasers

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Polarimetric parity-time-symmetric photonic system October 9th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project