Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Spin clean-up method brings practical quantum computers closer to reality: Osaka City University develops a quantum algorithm that removes pesky spin contaminants from chemical calculations on quantum computers

If the measurement outcome in the quantum circuit is the |0? state, the spin contaminated wave function |?Cont? is projected out onto the spin annihilated one |?Anni?. The rightmost part of the top line denotes the measurement.

CREDIT
Kenji Sugisaki, Kazunobu Sato and Takeji Takui, Osaka City University
If the measurement outcome in the quantum circuit is the |0? state, the spin contaminated wave function |?Cont? is projected out onto the spin annihilated one |?Anni?. The rightmost part of the top line denotes the measurement. CREDIT Kenji Sugisaki, Kazunobu Sato and Takeji Takui, Osaka City University

Abstract:
Quantum computers are the new frontier in advanced research technology, with potential applications such as performing critical calculations, protecting financial assets, or predicting molecular behavior in pharmaceuticals. Researchers from Osaka City University have now solved a major problem hindering large-scale quantum computers from practical use: precise and accurate predictions of atomic and molecular behavior.

Spin clean-up method brings practical quantum computers closer to reality: Osaka City University develops a quantum algorithm that removes pesky spin contaminants from chemical calculations on quantum computers

Osaka, Japan | Posted on September 25th, 2020

They published their method to remove extraneous information from quantum chemical calculations on Sept. 17 as an advanced online article in Physical Chemistry Chemical Physics, a journal of the Royal Society of Chemistry.

"One of the most anticipated applications of quantum computers is electronic structure simulations of atoms and molecules," said paper authors Kenji Sugisaki, Lecturer and Takeji Takui, Professor Emeritus in the Department of Chemistry and Molecular Materials Science in Osaka City University's Graduate School of Science.

Quantum chemical calculations are ubiquitous across scientific disciplines, including pharmaceutical therapy development and materials research. All of the calculations are based on solving physicist Erwin Schrödinger's equation, which uses electronic and molecular interactions that result in a particular property to describe the state of a quantum-mechanical system.

"Schrödinger equations govern any behavior of electrons in molecules, including all chemical properties of molecules and materials, including chemical reactions," Sugisaki and Takui said.

On classical computers, such precise equations would take exponential time. On quantum computers, this precision is possible in realistic time, but it requires "cleaning" during the calculations to obtain the true nature of the system, according to them.

A quantum system at a specific moment in time, known as a wave function, has a property described as spin, which is the total of the spin of each electron in the system. Due to hardware faults or mathematical errors, there may be incorrect spins informing the system's spin calculation. To remove these 'spin contaminants,' the researchers implemented an algorithm that allows them to select the desired spin quantum number. This purifies the spin, removing contaminants during each calculation--a first on quantum computers, according to them.

"Quantum chemical calculations based on exactly solving Schrödinger equations for any behavior of atoms and molecules can afford predictions of their physical-chemical properties and complete interpretations on chemical reactions and processes," they said, noting that this is not possible with currently available classical computers and algorithms. "The present paper has given a solution by implementing a quantum algorithm on quantum computers."

The researchers next plan to develop and implement algorithms designed to determine the state of electrons in molecules with the same accuracy for both excited- or ground-state electrons.

###

Other contributors include Kazuo Toyota, Kazunobu Sato and Daisuke Shiomi, all of whom are affiliated with the Department of Chemistry and Molecular Materials Science in Osaka City University's Graduate School of Science. Sugisaki is also affiliated with the Japan Science and Technology Agency's PRESTO Project, "Quantum Software." Takui is also a University Research Administrator in the Research Support Department/University Research Administrator Center of Osaka City University.

####

About Osaka City University
We are Osaka City University - the oldest research university in Osaka. With 9 undergraduate faculties and 11 graduate schools all dedicated to making urban life better, energy cleaner, and people healthier and happier, we have won numerous awards and have produced 2 Nobel laureates. For more information, please visit our website at https://www.osaka-cu.ac.jp/en

For more information, please click here

Contacts:
James Gracey

81-666-053-454

@OCU_PR

Copyright © Osaka City University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020

Quantum Physics

NIST sensor experts invent supercool mini thermometer November 17th, 2020

CCNY & partners in quantum algorithm breakthrough November 13th, 2020

Smaller than Ever—Exploring the Unusual Properties of Quantum-sized Materials November 13th, 2020

A new candidate material for quantum spin liquids November 12th, 2020

Possible Futures

Russian scientists improve 3D printing technology for aerospace composites using oil waste November 27th, 2020

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

Quantum Computing

Spintronics advances -- Controlling magnetization direction of magnetite at room temperature: Scientists develop an energy-efficient strategy to reversibly change 'spin orientation' or magnetization direction in magnetite at room temperature November 20th, 2020

NIST sensor experts invent supercool mini thermometer November 17th, 2020

CCNY & partners in quantum algorithm breakthrough November 13th, 2020

A new candidate material for quantum spin liquids November 12th, 2020

Discoveries

An ionic forcefield for nanoparticles: Tunable coating allows hitch-hiking nanoparticles to slip past the immune system to their target November 27th, 2020

Russian scientists improve 3D printing technology for aerospace composites using oil waste November 27th, 2020

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

Announcements

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Russian scientists improve 3D printing technology for aerospace composites using oil waste November 27th, 2020

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Quantum nanodiamonds may help detect disease earlier: The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL research November 27th, 2020

One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020

Quantum nanoscience

Pitt researchers create nanoscale slalom course for electrons: Professors from the Department of Physics and Astronomy have created a serpentine path for electrons November 27th, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

NIST sensor experts invent supercool mini thermometer November 17th, 2020

CCNY & partners in quantum algorithm breakthrough November 13th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project