Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Physicists make electrical nanolasers even smaller

Electrically pumped surface plasmon-polariton nanolaser

CREDIT
Dmitry Fedyanin
Electrically pumped surface plasmon-polariton nanolaser CREDIT Dmitry Fedyanin

Abstract:
Researchers from the Moscow Institute of Physics and Technology and King's College London cleared the obstacle that had prevented the creation of electrically driven nanolasers for integrated circuits. The approach, reported in a recent paper in Nanophotonics, enables coherent light source design on the scale not only hundreds of times smaller than the thickness of a human hair but even smaller than the wavelength of light emitted by the laser. This lays the foundation for ultrafast optical data transfer in the manycore microprocessors expected to emerge in the near future.

Physicists make electrical nanolasers even smaller

Moscow, Russia | Posted on September 18th, 2020

Light signals revolutionized information technologies in the 1980s, when optical fibers started to replace copper wires, making data transmission orders of magnitude faster. Since optical communication relies on light -- electromagnetic waves with a frequency of several hundred terahertz -- it allows transferring terabytes of data every second through a single fiber, vastly outperforming electrical interconnects.

Fiber optics underlies the modern internet, but light could do much more for us. It could be put into action even inside the microprocessors of supercomputers, workstations, smartphones, and other devices. This requires using optical communication lines to interconnect the purely electronic components, such as processor cores. As a result, vast amounts of information could be transferred across the chip nearly instantaneously.

Getting rid of the limitation on data transmission will make it possible to directly improve microprocessor performance by stacking more processor cores, to the point of creating a 1,000-core processor that would be virtually 100 times faster than its 10-core counterpart, which is pursued by the semiconductor industry giants IBM, HP, Intel, Oracle, and others. This in turn will make it possible to design a true supercomputer on a single chip.

The challenge is to connect optics and electronics at the nanoscale. To achieve this, the optical components cannot be larger than hundreds of nanometers, which is about 100 times smaller than the width of a human hair. This size restriction also applies to on-chip lasers, which are necessary for converting information from electrical signals to optical pulses that carry the bits of the data.

However, light is a kind of electromagnetic radiation with a wavelength of hundreds of nanometers. And the quantum uncertainty principle says there is a certain minimum volume that light particles, or photons, can be localized in. It cannot be smaller than the cube of the wavelength. In crude terms, if one makes a laser too small, the photons will not fit into it. That said, there are ways around this restriction on the size of optical devices, which is known as the diffraction limit. The solution is to replace photons with surface plasmon-polaritons, or SPPs.

SPPs are collective oscillations of electrons that are confined to the surface of a metal and interact with the surrounding electromagnetic field. Only a few metals known as plasmonic metals are good to work with SPPs: gold, silver, copper, and aluminum. Just like photons, SPPs are electromagnetic waves, but at the same frequency they are much better localized -- that is, they occupy less space. Using SPPs instead of photons makes it possible to "compress" light and thus overcome the diffraction limit.

The design of truly nanoscale plasmonic lasers is already possible with current technologies. However, these nanolasers are optically pumped, that is, they have to be illuminated with external bulky and high-power lasers. This may well be convenient for scientific experiments, but not outside the laboratory. An electronic chip intended for mass production and real-life applications has to incorporate hundreds of nanolasers and operate on an ordinary printed circuit board. A practical laser needs to be electrically pumped, or, in other words, powered by an ordinary battery or DC power supply. So far such lasers are only available as devices that operate at cryogenic temperatures, which is not suitable for most practical applications, since maintaining liquid nitrogen cooling is not typically possible.

The physicists from the Moscow Institute of Physics and Technology (MIPT) and King's College London have proposed an alternative to the conventional way electrical pumping works. Usually the scheme of electrical pumping of nanolasers requires an ohmic contact made of titanium, chromium, or a similar metal. Moreover, that contact has to be a part of the resonator -- the volume where the laser radiation is generated. The problem with that is titanium and chromium strongly absorb light, which harms resonator performance. Such lasers suffer from high pump current and are susceptible to overheating. This is why the need for cryogenic cooling emerges, along with all the inconveniences it entails.

The proposed new scheme for electrical pumping is based on a double heterostructure with a tunneling Schottky contact. It makes the ohmic contact with its strongly absorbing metal redundant. The pumping now happens across the interface between the plasmonic metal and semiconductor, along which SPPs propagate. "Our novel pumping approach makes it possible to bring the electrically driven laser to the nanoscale, while retaining its ability to operate at room temperature. At the same time, unlike other electrically pumped nanolasers, the radiation is effectively directed to a photonic or plasmonic waveguide, making the nanolaser fit for integrated circuits," Dr. Dmitry Fedyanin from the Center for Photonics and 2D Materials at MIPT commented.

The plasmonic nanolaser proposed by the researchers is smaller -- in each of its three dimensions -- than the wavelength of the light it emits. Moreover, the volume occupied by SPPs in the nanolaser is 30 times smaller than the light wavelength cubed. According to the researchers, their room-temperature plasmonic nanolaser could be easily made even smaller, making its characteristics even more impressive, but that would come at the cost of the inability to effectively extract the radiation into a bus waveguide. Thus, while further miniaturization would render the device poorly applicable to on-chip integrated circuits, it would be still convenient for chemical and biological sensors and near-field optical spectroscopy or optogenetics.

Despite its nanoscale dimensions, the predicted output power of the nanolaser amounts to over 100 microwatts, which is comparable to much larger photonic lasers. Such a high output power allows each nanolaser to be used to transmit hundreds of gigabits per second, eliminating one of the most formidable obstacles to higher-performance microchips. And that includes all sorts of hi-end computing devices: supercomputer processors, graphic processors, and perhaps even some gadgets to be invented in the future.

###

The study was supported by a grant of the Russian Foundation for Basic Research.

####

For more information, please click here

Contacts:
Varvara Bogomolova

7-916-147-4496

@mipt_eng

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Optical computing/Photonic computing

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project