Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A phonon laser - coherent vibrations from a self-breathing resonator

Figure 1. (a) Polariton BEC and phonon lasing of a microstructured trap in a semiconductor microcavity. (b) BEC emission under low (the lower curve) and high (the upper curve) particle densities, displaying phonon sidebands separated by the phonon energy ?ω_a .

CREDIT
PDI and Instituto Balseiro and Centro Atómico
Figure 1. (a) Polariton BEC and phonon lasing of a microstructured trap in a semiconductor microcavity. (b) BEC emission under low (the lower curve) and high (the upper curve) particle densities, displaying phonon sidebands separated by the phonon energy ?ω_a . CREDIT PDI and Instituto Balseiro and Centro Atómico

Abstract:
Lasing - the emission of a collimated light beam of light with a well-defined wavelength (color) and phase - results from a self-organization process, in which a collection of emission centers synchronizes itself to produce identical light particles (photons). A similar self-organized synchronization phenomenon can also lead to the generation of coherent vibrations - a phonon laser, where phonon denotes, in analogy to photons, the quantum particles of sound.

A phonon laser - coherent vibrations from a self-breathing resonator

Berlin, Germany | Posted on September 11th, 2020

Photon lasing was first demonstrated approximately 60 years ago and, coincidentally, 60 years after its prediction by Albert Einstein. This stimulated emission of amplified light found an unprecedented number of scientific and technological applications in multiple areas.

Although the concept of a "laser of sound" was predicted almost at the same time, only few implementations have so far been reported and none has attained technological maturity. Now, a collaboration between researchers from Instituto Balseiro and Centro Atómico in Bariloche (Argentina) and Paul-Drude-Institut in Berlin (Germany) has introduced a novel approach for the efficient generation of coherent vibrations in the tens of GHz range using semiconductor structures [Nat. Commun. DOI 10.1038/s41467-020-18358-z]. Interestingly, this approach to the generation of coherent phonons is based on another of Einstein's predictions: that of the 5th state of matter, a Bose-Einstein condensate (BEC) of coupled light-matter particles (polaritons).

The polariton BEC is created in a microstructured trap of a semiconductor microcavity consisting of electronic centers sandwiched in-between distributed Bragg reflectors (DBRs) designed to reflect light of the same energy hω_C emitted by the centers (cf. Fig. 1a). When optically excited by a light beam with a different energy hω_L, for which the DBR is transparent, the electronic states of the centers emit light particles (photons) at the energy hω_C, which are back-reflected at the DBRs. The photons are then again reabsorbed by the centers. The rapid and repeating sequence of emission and reabsorption events makes it impossible to distinguish whether the energy is stored in an electronic or photonic state. One rather says that the mixing between the states creates a new, light-matter particle, called polariton. Furthermore, under a high particle density (and helped by the spatial localization induced by the trap), the polaritons enter a self-organized state similar to photons in a laser, where all particles synchronize to emit light with the same energy and phase - a polariton BEC laser. The characteristic signature of the polariton BEC is a very narrow spectral line illustrated by the blue curve in Fig. 1b, which can be detected by measuring the evanescent radiation escaping from the microcavity.

A further interesting property of the used microcavity mirrors (DBRs) is the ability to reflect not only optical (light) but also mechanical vibrations (sound) within a specific range of wavelengths. As a consequence, a typical AlGaAs microcavity for photons in the near-infrared also confines quanta of vibrations - phonons - with the energy hω_a corresponding to the oscillation frequency ω_a/2pi of approximately 20 GHz. As the photon reflection by the DBRs provides the required feedback for the formation of a polariton BEC, phonon reflection leads to a buildup of the phonon population as well as an enhancement of the phonon interaction with the polariton BEC.

How does the interaction between polaritons and phonons occur? As air in a tire, a high density of condensed polaritons exerts a pressure on the microcavity mirrors, which can trigger and sustain mechanical oscillations at the frequency of the confined phonons. These breathing oscillations modify the microcavity dimensions, thus acting back on the polariton BEC. It is this coupled optomechanical interaction that gives rise to the coherent emission of sound above a critical polariton density. A fingerprint of this coherent emission of phonons is the self-pulsing of the BEC emission under continuous excitation by a laser with the energy hω_L. This self-pulsing is identified by the emergence of strong sidebands around the polariton BEC emission displaced by the multiples of the phonon energy hω_a (cf. the red curve in Fig. 1b).

Analysis of the amplitude of the sidebands in Fig. 1b shows that hundreds of thousands of monochromatic phonons populate the resulting vibrational state and are emitted towards the substrate as a 20 GHz coherent phonon laser beam. An essential feature of the design is the stimulation of the phonons by an internal highly intense and monochromatic light emitter - the polariton BEC - which can be excited not only optically but also electrically, as in a Vertical Cavity Surface Emitting Laser (VCSEL). Furthermore, higher phonon frequencies can be achieved by appropriate modifications of the microcavity design. Potential applications of the phonon laser include the coherent control of light beams, quantum emitters, and gates in communication and quantum information devices, as well as light-to-microwave bidirectional conversion in a very wide 20-300 GHz frequency range relevant for future network technologies.

####

For more information, please click here

Contacts:
Alexander Kuznetsov

49-302-037-7430

Copyright © Forschungsverbund Berlin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project