Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment

Abstract:
Dipanjan Pan, professor of chemical, biochemical, and environmental engineering at UMBC, and collaborators published a seminal study in Nature Communications that demonstrates for the first time a method of biosynthesizing plasmonic gold nanoparticles within cancer cells, without the need for conventional bench-top lab methods. It has the potential to notably expand biomedical applications.

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment

Baltimore, MD | Posted on September 11th, 2020

Conventional laboratory-based synthesis of gold nanoparticles require ionic precursors and reducing agents subjected to varying reaction conditions such as temperature, pH, and time. This leads to variation in nanoparticle size, morphology and functionalities that are directly correlated to their internalization in cells, their residence time in vivo, and clearance. In order to avoid these uncertainties, this work demonstrates that biosynthesis of gold nanoparticles can be achieved efficiently and directly inside cancer cells without requiring conventional laboratory methods.

The researchers examined how various cancer cells responded to the introduction of chloroauric acid to their cellular microenvironment by forming gold nanoparticles. These nanoparticles generated within the cell can potentially be used for various biomedical applications, including in x-ray imaging and in therapy by destroying abnormal tissue or cells.

In the paper, Pan and his team describe their new method of producing these plasmonic gold nanoparticles within cells in minutes, within a cell's nucleus, using polyethylene glycol as a delivery vector for ionic gold. "We have developed a unique system where gold nanoparticles are reduced by cellular biomolecules and those are able to retain their functionality, including the capacity to guide the remaining cluster to the nucleus," says Pan.

They also worked to further demonstrate the biomedical potential of this approach by inducing in-situ biosynthesis of gold nanoparticles within a mouse tumor, followed by photothermal remediation of the tumor. Pan explains that the mouse study exemplified how "the intracellular formation and nuclear migration of these gold nanoparticles presents a highly promising approach for drug delivery application."

"Gold is the quintessential noble element that has been used in biomedical applications since its first colloidal synthesis more than three centuries ago," Pan notes. "To appreciate its potential for clinical application, however, the most challenging research ahead of us will be to find new methods of producing these particles with uncompromised reproducibility with functionalities that can promote efficient cellular binding, clearance, and biocompatibility and to assess their long-term term effects on human health. This new study is a small but important step toward that overarching goal."

###

In addition to his appointment at UMBC, Pan is a professor of diagnostic radiology and nuclear medicine and pediatrics at the University of Maryland School of Medicine (UMSOM) as part of his dual appointment with the University of Maryland, Baltimore. Coauthors on the paper are affiliated with the University of Illinois, Urbana-Champaign; UMSOM; and Cytoviva, Inc.

####

For more information, please click here

Contacts:
Megan Hanks Mastrola

410-455-5791

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Cancer

Understanding nanoparticle entry mechanism into tumors December 25th, 2020

Nanotechnology -- nanoparticles as weapons against cancer December 18th, 2020

Scientists and students publish blueprints for a cheaper single-molecule microscope November 6th, 2020

'Like a fishing net,' nanonet collapses to trap drug molecule: New method presents possibilities for rapidly making and testing vaccine formulations October 6th, 2020

Possible Futures

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Nanomedicine

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

Single-dose COVID-19 vaccine triggers antibody response in mice January 8th, 2021

Nanocrystals that eradicate bacteria biofilm January 8th, 2021

Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021

Announcements

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Nanobiotechnology

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

Nanoparticle vaccine for COVID-19 January 8th, 2021

Single-dose COVID-19 vaccine triggers antibody response in mice January 8th, 2021

Nanocrystals that eradicate bacteria biofilm January 8th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project