Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Machine learning peeks into nano-aquariums

Illinois researchers have linked electron microscope imaging and machine learning, making it much easier to study nanoparticles in action. The schematic shows how a neural network, middle, works as a bridge between liquid-phase electron microscope imaging, left, and streamlined data output, right. For more information visit, pubs.acs.org/doi/10.1021/acscentsci.0c00430.

Graphic courtesy ACS and the Qian Chen group
Illinois researchers have linked electron microscope imaging and machine learning, making it much easier to study nanoparticles in action. The schematic shows how a neural network, middle, works as a bridge between liquid-phase electron microscope imaging, left, and streamlined data output, right. For more information visit, pubs.acs.org/doi/10.1021/acscentsci.0c00430. Graphic courtesy ACS and the Qian Chen group

Abstract:
In the nanoworld, tiny particles such as proteins appear to dance as they transform and assemble to perform various tasks while suspended in a liquid. Recently developed methods have made it possible to watch and record these otherwise-elusive tiny motions, and researchers now take a step forward by developing a machine learning workflow to streamline the process.

Machine learning peeks into nano-aquariums

Champaign, IL | Posted on August 31st, 2020

The new study, led by Qian Chen, a professor of materials science and engineering at the University of Illinois, Urbana-Champaign, builds upon her past work with liquid-phase electron microscopy and is published in the journal ACS Central Science.

Being able to see – and record – the motions of nanoparticles is essential for understanding a variety of engineering challenges. Liquid-phase electron microscopy, which allows researchers to watch nanoparticles interact inside tiny aquariumlike sample containers, is useful for research in medicine, energy and environmental sustainability and in fabrication of metamaterials, to name a few. However, it is difficult to interpret the dataset, the researchers said. The video files produced are large, filled with temporal and spatial information, and are noisy due to background signals – in other words, they require a lot of tedious image processing and analysis.

“Developing a method even to see these particles was a huge challenge,” Chen said. “Figuring out how to efficiently get the useful data pieces from a sea of outliers and noise has become the new challenge.”

To confront this problem, the team developed a machine learning workflow that is based upon an artificial neural network that mimics, in part, the learning potency of the human brain. The program builds off of an existing neural network, known as U-Net, that does not require handcrafted features or predetermined input and has yielded significant breakthroughs in identifying irregular cellular features using other types of microscopy, the study reports.

“Our new program processed information for three types of nanoscale dynamics including motion, chemical reaction and self-assembly of nanoparticles,” said lead author and graduate student Lehan Yao. “These represent the scenarios and challenges we have encountered in the analysis of liquid-phase electron microscopy videos.”

The researchers collected measurements from approximately 300,000 pairs of interacting nanoparticles, the study reports.

Click here to see liquid-phase electron microscopy with combined machine learning in action.

As found in past studies by Chen’s group, contrast continues to be a problem while imaging certain types of nanoparticles. In their experimental work, the team used particles made out of gold, which is easy to see with an electron microscope. However, particles with lower elemental or molecular weights like proteins, plastic polymers and other organic nanoparticles show very low contrast when viewed under an electron beam, Chen said.

“Biological applications, like the search for vaccines and drugs, underscore the urgency in our push to have our technique available for imaging biomolecules,“ she said. “There are critical nanoscale interactions between viruses and our immune systems, between the drugs and the immune system, and between the drug and the virus itself that must be understood. The fact that our new processing method allows us to extract information from samples as demonstrated here gets us ready for the next step of application and model systems.”

The team has made the source code for the machine learning program used in this study publicly available through the supplemental information section of the new paper. “We feel that making the code available to other researchers can benefit the whole nanomaterials research community,”Chen said.

Chen also is affiliated with chemistry, the Beckman Institute for Advanced Science and Technology and the Materials Research Laboratory at the U. of I.

The National Science Foundation and Air Force Office of Scientific Research supported this study.

####

For more information, please click here

Contacts:
Qian Chen
217-300-1137

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Machine learning to reveal nanoparticle dynamics from liquid-phase TEM videos” is available online and from the U. of I. News Bureau. DOI: 10.1021/acscentsci.0c00430:

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Imaging

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Nanofabrication

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Nanomedicine

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Directly into the brain: A 3D multifunctional and flexible neural interface: Novel design of brain chip implant allows for measuring neuronal activity while simultaneously delivering drugs to the implant site October 1st, 2021

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

Discoveries

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Materials/Metamaterials

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Tools

Inspired by photosynthesis, scientists double reaction quantum efficiency October 1st, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Tweezer grant pleases Rice researchers: University wins NSF grant to acquire ‘optical tweezer’ to manipulate micron-scale matter September 10th, 2021

Imaging single spine structural plasticity at the nanoscale level: Researchers at the Max Planck Florida Institute for Neuroscience (MPFI) have developed a new imaging technique capable of visualizing the dynamically changing structure of dendritic spines with unprecedented resol September 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project