Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An improved wearable, stretchable gas sensor using nanocomposites

An example of a flexible gas sensor worn over a knuckle.

CREDIT
Cheng Lab, Penn State
An example of a flexible gas sensor worn over a knuckle. CREDIT Cheng Lab, Penn State

Abstract:
A stretchable, wearable gas sensor for environmental sensing has been developed and tested by researchers at Penn State, Northeastern University and five universities in China.

An improved wearable, stretchable gas sensor using nanocomposites

University Park, PA | Posted on August 28th, 2020

The sensor combines a newly developed laser-induced graphene foam material with a unique form of molybdenum disulfide and reduced-graphene oxide nanocomposites. The researchers were interested in seeing how different morphologies, or shapes, of the gas-sensitive nanocomposites affect the sensitivity of the material to detecting nitrogen dioxide molecules at very low concentration. To change the morphology, they packed a container with very finely ground salt crystals.

Nitrogen dioxide is a noxious gas emitted by vehicles that can irritate the lungs at low concentrations and lead to disease and death at high concentrations.

When the researchers added molybdenum disulfide and reduced graphene oxide precursors to the canister, the nanocomposites formed structures in the small spaces between the salt crystals. They tried this with a variety of different salt sizes and tested the sensitivity on conventional interdigitated electrodes, as well as the newly developed laser-induced graphene platform. When the salt was removed by dissolving in water, the researchers determined that the smallest salt crystals enabled the most sensitive sensor.

"We have done the testing to 1 part per million and lower concentrations, which could be 10 times better than conventional design," says Huanyu Larry Cheng, assistant professor of engineering science and mechanics and materials science and engineering. "This is a rather modest complexity compared to the best conventional technology which requires high-resolution lithography in a cleanroom."

Ning Yi and Han Li, doctoral students at Penn State and co-authors on the paper in Materials Today Physics, added, "The paper investigated the sensing performance of the reduced graphene oxide/moly disulfide composite. More importantly, we find a way to enhance the sensitivity and signal-to-noise ratio of the gas sensor by controlling the morphology of the composite material and the configuration of the sensor-testing platform. We think the stretchable nitrogen dioxide gas sensor may find applications in real-time environmental monitoring or the healthcare industry."

###

Other Penn State authors on the paper, titled "Stretchable, Ultrasensitive, and Low-Temperature NO2 Sensors Based on Nanocomposites," are Li Yang, Jia Zhu, Xiaoqi Zheng and Zhendong Liu.

National Science Foundation and American Chemical Society Petroleum Research Fund funded this research with additional funding from Penn State and Northeastern.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-5689

@penn_state

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Govt.-Legislation/Regulation/Funding/Policy

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Possible Futures

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Graphene grows and we can see it March 24th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Sensors

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Discoveries

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Graphene grows and we can see it March 24th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Announcements

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Energy

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Stanford researchers develop a new way to identify bacteria in fluids: An innovative adaptation of the technology in an old inkjet printer plus AI-assisted imaging leads to a faster, cheaper way to spot bacteria in blood, wastewater, and more March 3rd, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project